Vzdialenosť veže
Pozorovací uhol vrcholu veže od bodu A na zemi je 30°. Pri presune na vzdialenosť 20 m smerom k päte veže do bodu B sa pozorovací uhol zväčší na 60°. Nájdite výšku veže a vzdialenosť veže od miesta A .
Správna odpoveď:

Tipy na súvisiace online kalkulačky
Máte lineárnu rovnicu alebo sústavu rovníc a hľadáte jej riešenie? Alebo máte kvadratickú rovnicu?
Pozrite aj našu kalkulačku pravouhlého trojuholníka.
Pozrite aj našu trigonometrickú trojuholníkovu kalkulačku.
Vyskúšajte si prevody jednotiek uhlov uhlové stupne, minúty, sekundy, radiány.
Pozrite aj našu kalkulačku pravouhlého trojuholníka.
Pozrite aj našu trigonometrickú trojuholníkovu kalkulačku.
Vyskúšajte si prevody jednotiek uhlov uhlové stupne, minúty, sekundy, radiány.
Na vyriešenie tejto úlohy sú potrebné tieto znalosti z matematiky:
algebraplanimetriagoniometria a trigonometriaJednotky fyzikálnych veličínÚroveň náročnosti úlohy
Súvisiace a podobné príklady:
- Pozorovací uhol
Z bodu A na zemi je pozorovací uhol vrcholu 20 m vysokej budovy 45°. Na vrchole budovy je vztýčená vlajka a pozorovací uhol vrcholu vlajkovej tyče od A je 60°. Nájdite dĺžku vlajkovej tyče a vzdialenosť budovy od bodu A. - Vzdialenosť lode
Muž stojaci na palube lode, ktorá je 10 m nad hladinou vody, pozoruje vrchol kopca pri pozorovacom uhle (elevácie) 60° a pozorovací uhol sklonu päty kopca je 30°. Nájdite vzdialenosť kopca od lode a výšku kopca. - Pozorovací uhol
Dvaja muži sú na opačných stranách veže. Namerajú uhly elevácie (pozorovací) vrcholu veže ako 30° a druhý ako 45°. Ak je výška veže 50 m, nájdite vzdialenosť medzi týmito dvoma mužmi. - Uhol elevácie 3
Uhol elevácie tyče z bodu na vodorovnej zemi je 15°. Po prekonaní vzdialenosti 10 m smerom k tyči sa uhol elevácie zmení na 30°. Aká je výška tyče? - Výškový uhol - veža
Vrchol veže stojacej na rovine vidíme z určitého miesta A vo výškovom uhle 39° 25´. Ak prídeme smerom k jeho päte o 50m bližšie na miesto B, vidíme z neho vrchol veže vo výškovom uhle 56° 42 '. Aká vysoká je veža? - Rádiova anténa
Avanti sa snaží nájsť výšku rádiovej antény na streche miestnej budovy. Stojí vo vodorovnej vzdialenosti 21 metrov od budovy. Uhol elevácie od jej očí k streche (bod A) je 42° a uhol elevácie od jej očí k vrcholu antény (bod B) je 51°. Ak sú jej oči 1,54 - Tieň 2
Tieň veže stojacej na rovnom povrchu je o 40 m dlhší, keď je výška Slnka 30°, ako keď je 60°. Nájdite výšku veže.
