Guličky

Máme n-rovnakých gulí (číslované od 1-n), vyberajú sa bez vracania. Urči:
1) Pravdepodobnosť, že aspoň pri 1 ťahu sa číslo ťahu zhoduje s číslom gule?
2) Určiť strednú hodnotu a rozptyl počtu gulí, kde sa zhoduje číslo gule s číslom poradí.

Výsledok

p =  0
m =  0
σ =  0







Napíšte nám komentár ku príkladu a riešeniu (napríklad ak je stále niečo nejasné...):

Zobrazujem 0 komentárov:
1st comment
Buďte prvý, kto napíše komentár!
avatar




Na vyriešenie tejto slovnej úlohy sú potrebné tieto znalosti z matematiky:

Chceš si dať zrátať kombinačné číslo?

Ďaľšie podobné príklady:

  1. Gule
    spheres Z osudia, v ktorom je 6 gulí bielych a 15 červených, ťaháme postupne 4-krát bez vrátenia. Aká je pravdepodobnosť, že vytiahneme gule v poradí: červená biela červená červená?
  2. Jedna zelená
    gulicky V nádobe je 45 bielych a 15 zelených guličiek. Náhodne vyberieme 5 guličiek. Aká je pravdepodobnosť, že bude maximálne jedna zelená?
  3. V krabici
    gulky_7 V krabici je 8 loptičiek, z nich sú 3 nové. Pre prvú hru sa z krabice vyberú náhodne 2 loptičky, ktoré sa po hre vrátia späť ! Pre druhú hru sa opäť náhodne vyberú 2 loptičky, aká je pravdepodobnosť toho že obe už boli použité?
  4. Matice
    matrix_3 Určite, koľkokrát je väčší determinant matice A, ktorý sa rovná 9 ako determinant jej inverznej matice.
  5. Generálny riaditeľ
    normal_dist Výpočtom rozhodnite koľko kandidátov z celkového počtu 1000 kandidátov na funkciu generálneho riaditeľa plní požiadavky spôsobilosti na žiaducemu výkone tejto top manažérske funkcie s aspoň 67% pravdepodobnosťou - samozrejme za predpokladu, že spôsobilosť.
  6. Dôkaz sporom
    thales_1 Chceme dokázať sporom tvrdenie: Ak je prirodzené číslo n deliteľné šiestimi, potom je n deliteľné tromi. Z akého predpokladu budeme vychádzať?
  7. Firma
    probability Firma doteraz vyrobila 500 000 áut a z toho 5000 bolo vadných. Aká je pravdepodobnosť, že z dennej produkcie 50 áut bude najviac jedno auto vadné?
  8. Distribučná funkcia
    distribution_fcn X 2 3 4 p 0,3 0,35 0,35 Pre údaje v tejto tabuľke mám vypočítať distribučnú funkciu F(x) a ďalej p(2,5 < ξ< 3,25), p(2,8 < ξ) a p(3,25 > ξ)
  9. V triede 10
    skola V triede je dnes 9 dievčat a 11 chlapcov. Aká je pravdepodobnosť, že dnes pôjde k tabuli počítať Ivanka?
  10. Lotéria
    lottery Fernando má dva žreby, každý z inej lotérie. V prvej lotérii je 973 000 žrebov a z nich vyhráva 687 000, v druhej lotérii je 1425 000 žrebov a z nich vyhráva 1102 000 žrebov. Aká veľká je pravdepodobnosť, že vyhrá aspoň jeden Fernando-ov žreb?
  11. Kábel
    tele Pretrhol sa telefónny kabel spájajúci miesta A, B vo vzdialenosti 2,5 km. Aka je pravdepodobnosť, ze sa to stalo vo vzdialenosti najviac 450 m od miesta A?
  12. Pravdepodobnosť 9
    probability_1 Manželka neprišla včas domov z práce. Manžel zo skúsenosti vie, že s pravdepodobnosťou 0,3 sa zarozprávala s kolegyňou alebo s pravdepodobnosťou 0,6 išla na nákupy alebo s pravdepodobnosťou 0,1 sa zdržala z iných dôvodov. Manžel vie, že o 16,00 bude manžel
  13. Priadza
    priadza Pracovníčka obsluhuje 600 vretien, na ktoré sa navíja priadza. Pravdepodobnosť roztrhnutia priadze na každom z vretien za čas t je 0,005. a) Určte rozdelenie pravdepodobnosti počtu roztrhnutých vretien za čas t a strednú hodnotu a rozptyl. b) Aká je prav
  14. Determinant
    matrix_13 Determinant jednotkovej matice sa rovná 7. Určte, koľko riadka obsahuje matice A.
  15. Srdcia
    hearts_cards 4 kariet je vybraných ze štandardnej sady 52 hracích kariet (13 sŕdc) s vrátením. Aká je pravdepodobnosť, že vytiahneme 4 sŕdc po sebe?
  16. Kartári
    cards_4 Hráč dostane 8 kariet z 32. Aká je pravdepodobnosť že dostane a, všetky 4 esá b. aspoň 1 eso
  17. Dvojnásobok riadku
    matrix_19 Hodnosť matice A je 3. Akú hodnosť bude mať táto matica, ak k jej prvému riadku pripočítame dvojnásobok druhého riadku.