Úhel tělesových úhlopříček

Pomocí vektorového skalárního součinu (tečky) produktu vypočítejte úhel tělesových úhlopříček kostky.

Výsledek

A =  70.529 °

Řešení:

D1=(1,1,1) D2=(1,1,1)  d1=D1 d1=12+12+12=31.7321  d2=D2 d2=12+12+(1)2=31.7321  D1 D2=d1 d2cosA  c=cosA=D1 D2d1d2  c=1 1+1 1+1 (1)d1 d2=1 1+1 1+1 (1)1.7321 1.7321130.3333  A0=arccos(c)=arccos(0.3333)1.231 rad  A=A0 =A0 180π  =70.52878  =70.529=703144"D_{1}=(1,1,1) \ \\ D_{2}=(1,1,-1) \ \\ \ \\ d_{1}=|D_{1}| \ \\ d_{1}=\sqrt{ 1^2+1^2+1^2 }=\sqrt{ 3 } \doteq 1.7321 \ \\ \ \\ d_{2}=|D_{2}| \ \\ d_{2}=\sqrt{ 1^2+1^2+(-1)^2 }=\sqrt{ 3 } \doteq 1.7321 \ \\ \ \\ D_{1} \cdot \ D_{2}=d_{1} \ d_{2} \cos A \ \\ \ \\ c=\cos A=\dfrac{ D_{1} \cdot \ D_{2} }{ d_{1} d_{2} } \ \\ \ \\ c=\dfrac{ 1 \cdot \ 1+1 \cdot \ 1+1 \cdot \ (-1) }{ d_{1} \cdot \ d_{2} }=\dfrac{ 1 \cdot \ 1+1 \cdot \ 1+1 \cdot \ (-1) }{ 1.7321 \cdot \ 1.7321 } \doteq \dfrac{ 1 }{ 3 } \doteq 0.3333 \ \\ \ \\ A_{0}=\arccos(c)=\arccos(0.3333) \doteq 1.231 \ \text{rad} \ \\ \ \\ A=A_{0} \rightarrow \ ^\circ =A_{0} \cdot \ \dfrac{ 180 }{ \pi } \ \ ^\circ =70.52878 \ \ ^\circ =70.529 ^\circ =70^\circ 31'44"



Naše příklady z velké míry nám poslali nebo vytvořili samotní žáci a studenti. Proto budeme velmi rádi, pokud případně chyby, které jste našli, pravopisné chyby nebo přeformulování příkladu nám prosím pošlete. Děkujeme!





Napište nám komentář ke příkladu (úlohe) a jeho řešení (například pokud je stále něco nejasné nebo máte jiné řešení, nebo příklad nevíte vypočítat, nebo-li řešení je nesprávné...):

Zobrazuji 0 komentářů:
1st comment
Buďte první, kdo napíše komentář!
avatar




Tipy na související online kalkulačky
Základem výpočtů v analytické geometrii je dobrá kalkulačka rovnice přímky, která ze souřadnic dvou bodů v rovině vypočítá smernicový, normálový i parametrický tvar přímky, směrnici, směrový úhel, směrový vektor, délku úsečky, průsečíky se souřadnicovým osami atd.
Dva vektory určeny velikostmi a vzájemným úhlem sčítá naše kalkulačka sčítání vektorů .
Pythagorova věta je základ výpočtů kalkulačky pravouhlého trojuholníka.
Vyzkoušejte také naši trigonometrickou trojúhelníkovou kalkulačku.

Další podobné příklady a úkoly:

  1. Vektorový součet
    vectors Velikost vektoru u je 4, vektoru v je 10. Vektory svírají úhel 60 °. Jaká je velikost vektoru u + v?
  2. Úhel mezi vektory
    arccos Najděte úhel mezi danými vektory a zaokrouhlete výsledek na desetinu stupně. u = (-22, 11)​​ a v = (16, 20)
  3. Skalární součin
    dot_product Vypočítejte u.v když |v| = 5, |v| = 2 a když vektory u, v, svírají úhel: a) 60° b) 45° c) 120°
  4. Body pravouhlého trojúhelníku
    RightTriangleMidpoint_3 Ukažte, že body P1 (5,0), P2 (2,1) a P3 (4,7) jsou vrcholy pravého trojúhelníku.
  5. Navigace lodě
    navigation Loď pluje 84 km na kurzu 17° a pak cestuje na kurzu 107° 135 km. Najděte vzdálenost konce cesty z výchozího bodu a zaokrouhlete je na nejbližší kilometr.
  6. Největší
    triangles_4 Vypočtěte největší úhel trojuhelníku o stranách 197, 208, 299.
  7. Tangens úhlu
    tan V případě, že tangens úhlu a pravoúhlého trojúhelníku je 0,8. Pak je její nejdelší strana . ..
  8. Lietadlo navigace
    triangle_airplane Letadlo opustilo letiště a letí na západ 120 mil a pak 150 mil ve směru jiho-západ 44.1°. Jak daleko je letadlo od letiště? Zaokrouhlete na nejbližší míli.
  9. Parametrický tvar
    vzdalenost Vypočítejte vzdálenost bodu A[2,1] od přímky p: X=-1+3t Y=5-4t Přímka p má parametrický tvar rovnice přímky. ..
  10. Zo 6 na 3
    thales_1 Chceme dokázat sporem tvrzení: Pokud je přirozené číslo n rozdělitelné šesti, potom n je dělitelné třemi. Z jakého předpokladu budeme vycházet?
  11. Vektor PQ
    vectors_2 Ze zadaných souřadnic bodů P = (5, 8) a Q = (6, 9), najděte souřadnice a velikost vektoru PQ.
  12. Jednotkový vektor
    one_1 Zjistěte jednotkový vektor (jeho souřadnice) k vektoru AB pokud A[-6; 8], B[-18; 10].
  13. Súradnice trojuholníka
    triangles A [0,0] B [-4,2] C [-6,0] vypočítejte V (průsečík výšek), T (těžiště), O - střed kružnice opsané
  14. Těžnice
    taznice3 Trojúhelník ABC v rovině Oxy; jsou dány souřadnice bodů: A = 2,7 B = -4,3 C = 6, -1 Zkuste vypočítet všechny těžnice a všechny délky stran.
  15. Trojúhelník PRT
    triangles_5 V rovnoramenném pravoúhlém trojúhelníku ABC s pravým úhlem při vrcholu C platí o souradnicích bodů: A (-1 , 2); C (-5 , -2) Vypočtěte délku strany AB.
  16. Vektory
    vektory Urči velikost vektorů u= (2,4) a v= (-3,3)
  17. Směrový vektor
    vectors_3 A(5;-4) B(1;3) C(-2;0) D(6;2) Vypočítej směrový vektor a) a=AB b) b= BC c) c=CD