Rolák

V triede bolo 12 žiakov. Deviati mali oblečené nohavice a ôsmi rolák. Koľko žiakov malo oblečené nohavice s rolákom? Ak má úloha viacej riešení, napíšte ako interval od-do .

Výsledok

a =  5
b =  8

Riešenie:

a=9+812=5a = 9+8-12 = 5
b=min(9,8)=8b = min(9,8) = 8







Napíšte nám komentár ku príkladu (úlohe) a jeho riešeniu (napríklad ak je stále niečo nejasné alebo máte iné riešenie, alebo príklad neviete vypočítať či riešenie je nesprávne...):

Zobrazujem 2 komentáre:
#
Žiak
Nerozumiem aká je prvá otázka po a

6 mesiacov  1 Like
#
Dr Math
Ano, uloha je nejednoznacne zadana; V ulohe chyba veta typu-kazdy mal aspon rolak alebo aspon nohavice. Ak toto nieje moze byt riesenim 5,6,7,8... Ak je zadane ze aspon rolak alebo nohavice, tak uloha ma jedine riesenie 5.

avatar









Na vyriešenie tejto úlohy sú potrebné tieto znalosti z matematiky:

Ďaľšie podobné príklady a úlohy:

  1. Prázdniny
    tabor V triede je 22 detí. Počas prázdnin bolo 12 detí v tábore a 19 detí na dovolenke s rodičmi. Určite minimálny a maximálny počet detí, ktoré mohli byť v tábore a aj na dovolenke s rodičmi súčasne.
  2. Keksy
    poleva V krabičke bolo celkom 200 sušienok. Pri ich výrobe pouzili cukrovú a čokoládovú polevu. Čokoládovú polevu použili do 157 sušienok. Cukrovú polevu použili do 100 sušienok. Koľko z týchto sušienok ma obe polevy?
  3. Parkovisko
    car_11 Na parkovisku bolo 16 osobných automobilov. Bolo 10 modrých áut a 10 vozidiel Škoda. Koľko je na parkovisku modrých škodoviek?
  4. Guľa v kuželi
    sphere-in-cone Guľi o polomere 3 cm opíšte kužeľ minimálneho objemu. Určte jeho rozmery.
  5. Socha
    michelangelo Na podstavci vysokom 4 m stojí socha vysoká 2.7 metrov. V akej vzdialenosti od sochy sa musí pozorovateľ postaviť, aby ju videl v najväčšom zornom uhle? Vzdialenosť oka pozorovateľa od zeme je 1.7 m.
  6. Tri čísla
    sigma Vytvorte z číslic 1 až 9 trojciferné čísla, tak že ich súčet bude najmenší. Aký hodnotu má súčet týchto čísel? (každú číslicu použite len raz)
  7. Z9–I–1
    ctverec_mo Vo všetkých deviatich poliach obrazca majú byť vyplnené prirodzené čísla tak, aby platilo: • každé z čísel 2, 4, 6 a 8 je použité aspoň raz, • štyri z polí vnútorného štvorca obsahujú súčiny čísel zo susediacich polí vonkajšieho štvorca, • v kruhu je súče
  8. Poklad
    max_cylinder_pyramid Skauti majú stan v tvare pravidelného štvorbokého ihlanu so stranou podstavy 4 m a výške 3 m. Do stanu potrebujú schovať valcovú nádobu s tajným pokladom. Určte polomer r (a výšku h) nádoby tak, aby mohli schovať čo nejobjemnější poklad.
  9. Guľa a kúžel
    cone_in_sphere Do gule s polomerom G = 41 cm vpíšte kužel s najväčším objemom. Aký je tento objem a aké sú rozmery kužela?
  10. Paušál 2013
    istoty_komunisti Od roku 2013 plánuje vláda viac zdaniť živnostníkov. Namiesto 40% paušálnych výdavkov budú paušálne výdavky 40% hrubého príjmu maximálne 420 Eur. Vypočítajte koľko percent budú tvoriť paušálne výdavky podľa pravidiel v roku 2013 z hrubého príjmu 2437 Eur
  11. Rebrík
    rebrik_4 4m rebrík sa dotýka kocky 1mx1m postavené pri stene. Ako vysoko na stene dosiahne?
  12. Útvar
    some_airplane Rovinný útvar má obsah 677 mm2. Vypočítajte jeho obvod, ak jeho obvod je najmenší možný.
  13. Cifry
    numbers_2 Napíšte najmenšie a najväčšie 1-ciferné číslo.
  14. Kúžeľ
    diag22 Do rotačného kužeľa s rozmermi - polomerom podstavy R = 8 cm a výškou H = 8 cm vpíšte valec maximálneho objemu tak, aby os valca bola kolmá na os kužeľa. Určte rozmery valca.
  15. MO Z8–I–3 - 2017 - Adelka
    numbers2_32 Adelka mala na papieri napísané dve čísla. Keď k nim pripísala ešte ich najväčší spoločný deliteľ a najmenší spoločný násobok, dostala štyri rôzne čísla menšie ako 100. S úžasom zistila, že keď vydelí najväčšie z týchto štyroch čísel najmenším, dostane naj
  16. Kvetinárstvo
    kvetiny V kvetinárstve dostali 72 bielych a 90 červených ruží. Koľko kytíc môžu najviac zviazať zo všetkých týchto ruží, ak každá kytica má mať rovnaký počet bielych a červených ruží?
  17. Objem krabice
    box Tvrdý papier v tvare obdĺžnika má rozmery 60 cm a 28 cm. V rohoch sa odstrihnú rovnaké štvorce a zvyšok sa ohne do tvaru otvorenej krabice. Aká dlhá musí byť strana odstrihnutých štvorcov, aby objem krabice bol najväčší?