Päťuholník

Vo vnútri pravidelného päťuholníka ABCDE je bod P taký, že trojuholník ABP je rovnostranný. Aký veľký je uhol BCP?
Urob si náčrtok.

Vaša odpoveď:

°



Napíšte nám komentár ku príkladu a riešeniu (napríklad ak je stále niečo nejasné...):

Zobrazujem 1 komentár:
#1
Mo - Ofic
Nápoveda. Uvedomte si, že trojuholník BCP nie je obyčajný.

Možné riešenie. Päťuholník ABCDE je pravidelný, najmä platí | AB | = | BC |. Trojuholník ABP je rovnostranný, najmä platí | AB | = | BP |. Odtiaľ vidíme, že | BP | = | BC |, teda, že trojuholník BCP je rovnoramenný. Jeho vnútorné uhly pri vrcholoch P a C sú preto zhodné; na ich určenie stačí poznať uhol pri vrchole B (súčet veľkostí vnútorných uhlov v ľubovoľnom trojuholníku je 180◦). Pritom uhol P BC je rozdielom uhlov ABC a ABP, z ktorých prvá je vnútorným uhlom pravidelného päťuholníka (vyjadríme vzápätí) a druhý je vnútorným uhlom rovnostranného trojuholníka (má veľkosť α = 60◦).

Päťuholník ABCDE môžeme rozdeliť na päť trojuholníkov so spoločným vrcholom P. Súčet vnútorných uhlov päťuholníka je rovný súčtu vnútorných uhlov všetkých piatich trojuholníkov výnimkou uhlov pri vrchole P, tj. 5 · 180◦-360◦ = 540◦. V pravidelnom päťuholníka sú všetky vnútorné uhly zhodné, každý má teda veľkosť 540◦: 5 = 108◦.

Odtiaľ konečne vieme vyjadriť β = |uhol PBC | = |uhol ABC | - |uhol ABP | = 108◦ - 60◦ = 48◦ a následne γ = |uhol BCP | = |uhol BPC | = (180◦ - 48◦) / 2 = 66◦.

Veľkosť uhla BCP je 66◦.

Poznámka. Veľkosť vnútorného uhla pravidelného päťuholníka je možné odvodiť aj pomocou rozdelenia na päť zhodných rovnoramenných trojuholníkov ako na nasledujúcom obrázku (S je stred päťuholníka, tj. Stred jemu opísanej kružnice).

Uhol pri vrchole S v každom z týchto trojuholníkov má veľkosť 360: 5 = 72◦; súčet uhlov pri základni je rovný 180◦-72◦ = 108◦, čo je tiež veľkosť vnútorného uhla pravidelného päťuholníka.

avatar