Priadza

Pracovníčka obsluhuje 600 vretien, na ktoré sa navíja priadza. Pravdepodobnosť roztrhnutia priadze na každom z vretien za čas t je 0,005.

a) Určte rozdelenie pravdepodobnosti počtu roztrhnutých vretien za čas t a strednú hodnotu a rozptyl.
b) Aká je pravdepodobnosť, že sa za čas t neroztrhne viac ako 5 vretien?

Výsledok

p(b) =  0







Napíšte nám komentár ku príkladu a riešeniu (napríklad ak je stále niečo nejasné...):

Zobrazujem 0 komentárov:
1st comment
Buďte prvý, kto napíše komentár!
avatar




Na vyriešenie tohto príkladu sú potrebné tieto znalosti z matematiky:

Chceš si dať zrátať kombinačné číslo? Hľadáte štatistickú kalkulačku?

Ďaľšie podobné príklady:

  1. Genetika
    kvetinky_sestricky1 Vykonal sa experiment, ktorý spočíval v krížení bieleho a fialového hrachu, pričom sa predpokladalo, že pokusné rastliny neboli ešte krížené. Podľa pravidiel dedičnosti možno očakávať, že 3/4 nových potomkov rozkvitne na fialovo a 1/4 na bielo. Vzklíčilo 1
  2. Test 5
    test_4 Učitel pripravil test s desiatimi otázkami. Študent má v každej otázke možnosť vybrať jednu správnu odpoveď zo štyroch (A, B,C, D). Študent sa na písomku vôbec nepripravil. Aká je pravdepodobnosť, že: a) Uhádne polovicu odpovedí správne? b) uhádne všetk
  3. Distribučná funkcia
    distribution_fcn X 2 3 4 p 0,3 0,35 0,35 Pre údaje v tejto tabuľke mám vypočítať distribučnú funkciu F(x) a ďalej p(2,5 < ξ< 3,25), p(2,8 < ξ) a p(3,25 > ξ)
  4. Lotéria
    lottery Fernando má dva žreby, každý z inej lotérie. V prvej lotérii je 973 000 žrebov a z nich vyhráva 687 000, v druhej lotérii je 1425 000 žrebov a z nich vyhráva 1102 000 žrebov. Aká veľká je pravdepodobnosť, že vyhrá aspoň jeden Fernando-ov žreb?
  5. Generálny riaditeľ
    normal_dist Výpočtom rozhodnite koľko kandidátov z celkového počtu 1000 kandidátov na funkciu generálneho riaditeľa plní požiadavky spôsobilosti na žiaducemu výkone tejto top manažérske funkcie s aspoň 67% pravdepodobnosťou - samozrejme za predpokladu, že spôsobilosť.
  6. Guličky
    stats Máme n-rovnakých gulí (číslované od 1-n), vyberajú sa bez vracania. Urči: 1) Pravdepodobnosť, že aspoň pri 1 ťahu sa číslo ťahu zhoduje s číslom gule? 2) Určiť strednú hodnotu a rozptyl počtu gulí, kde sa zhoduje číslo gule s číslom poradí.
  7. Gule
    spheres Z osudia, v ktorom je 7 gulí bielych a 17 červených, ťaháme postupne 3-krát bez vrátenia. Aká je pravdepodobnosť, že vytiahneme gule v poradí: red red red?
  8. Srdcia
    hearts_cards 4 kariet je vybraných ze štandardnej sady 52 hracích kariet (13 sŕdc) s vrátením. Aká je pravdepodobnosť, že vytiahneme 4 sŕdc po sebe?
  9. Trieda
    kresba V triede je 60% chlapcov a 40% dievčat. Dlhé vlasy má 10% chlapcov a 80% dievčat. a) Aká je pravdepodobnosť, že náhodne vybraná osoba má dlhé vlasy? b) Vybraná osoba má dlhé vlasy. Aká je pravdepodobnosť, že je to dievča?
  10. Jedna zelená
    gulicky V nádobe je 45 bielych a 15 zelených guličiek. Náhodne vyberieme 5 guličiek. Aká je pravdepodobnosť, že bude maximálne jedna zelená?
  11. Karty
    cards_2 Predpokladajme, že v klobúku sú tri karty. Jedna z nich je červená na obidvoch stranách, jedna z nich je čierna na obidvoch stranách a tretia má jednu stranu červenú a druhú čiernu. Z klobúka náhodne vytiahneme jednu kartu, a vidíme, že jedna jej strana je
  12. Kartári
    cards_4 Hráč dostane 8 kariet z 32. Aká je pravdepodobnosť že dostane a, všetky 4 esá b. aspoň 1 eso
  13. Kábel
    tele Pretrhol sa telefónny kabel spájajúci miesta A, B vo vzdialenosti 2,5 km. Aka je pravdepodobnosť, ze sa to stalo vo vzdialenosti najviac 450 m od miesta A?
  14. Firma
    probability Firma doteraz vyrobila 500 000 áut a z toho 5000 bolo vadných. Aká je pravdepodobnosť, že z dennej produkcie 50 áut bude najviac jedno auto vadné?
  15. Telefóny
    phones Sekretárka v podniku A telefonicky volá centrálu v podniku B v dobe najväčšej zaťaženosti telefónnych liniek, kedy pravdepodobnosť, že linka nebude obsadená je 0,25. Jednotlivé pokusy o spojenie opakuje po niekoľkých minútach tak dlho, pokým nebude s centr
  16. Trojice
    trojka Koľko rôznych trojíc možno vybrať zo skupiny 38 študentov?
  17. Dôkaz sporom
    thales_1 Chceme dokázať sporom tvrdenie: Ak je prirodzené číslo n deliteľné šiestimi, potom je n deliteľné tromi. Z akého predpokladu budeme vychádzať?