Množiny + úvaha - príklady a úlohy

Počet nájdených príkladov: 78

  • Zaočkovanosť
    Zaočkovanosť populácie je 80%. Neočkovaní tvoria 60% všetkých nakazených. O koľko percent majú neočkovaní väčšiu pravdepodobnosť nákazy? Uvažujte N = 10000 obyvateľov a K = 1000 nakazených. b. Koľko-krát väčšiu pravdepodobnosť nákazy majú neočkovaní?
  • 80% všetkých
    80% všetkých návštevníkov centra využíva zľavu. 3/4 všetkých návštevníkov chodí cvičiť pravidelne. Všetci návštevníci, ktorí chodia cvičiť pravidelne, využívajú zľavu. Koľko percent všetkých návštevníkov nechodí pravidelne cvičiť ale aj tak využívajú zľav
  • Vypočítajte: 2
    Vypočítajte: 1. Dané množiny zapíšte ako intervaly, znázornite graficky: {x ∈ R; 2< x ≤ 5} = {x ∈ R; 3 ≥ x} = {x ∈ R+; x < 4} = {x ∈ R; x < 4 ∧ x ≥ -1} = 2. Vymenujte všetky prvky nasledujúcich množín, zapíšte do množinovej zátvorky: A = { x Є N; x ≤ 5 }
  • Aká je 4
    Aká je pravdepodobnosť že v rodine so 4 deťmi sú po a) aspoň 3 dievčatá b) aspoň 1 chlapec keď pravdepodobnosť narodenia chlapca je 0,51
  • Na ihrisku 2
    Na ihrisku sú nakreslené tri rovnako veľké kruhy. Rozostavte 16 kolkov tak, aby v každom kruhu stálo 9 kolkov. Nájdite aspoň osem podstatne odlišných rozostavení, t. J. takých rozostavení, pri ktorých sa nerozlišujú kolky ani kruhy.
  • Pre skupinu
    Pre skupinu detí platí, že v každej trojici detí zo skupiny je chlapec menom Adam a v každej štvorici je dievča menom Beata. Koľko najviac detí môže byť v takejto skupine a aké sú v tom prípade ich mená?
  • Pre dve
    Pre dve neprázdne množiny A, B platí: A ∪ B má 16 prvkov, A ∩ B má 11 prvkov a množina A - B je prázdna. Koľko prvkov má množina B - A?
  • Tri jazyky
    Študenti VŠ si pri zápise vyberali cudzí jazyk do 1. ročníka. Spomedzi 120 zapísaných študentov si 75 zvolilo angličtinu, 65 nemčinu a 40 aj angličtinu a aj nemčinu. Použitím Vennovho diagramu určte: - koľko zo zapísaných študentov si zvolilo iba angličti
  • Kurzy jazyka
    Zo 60 zamestnancov firmy ich 28 chodí na kurz angličtiny, 17 na kurz nemčiny a 20 ľudí nechodí na žiadny z týchto kurzov. Koľko zamestnancov chodi na oba uvedené kurzy?
  • Kral sa
    Kral sa nevie rozhodnut, ako ma co najspravodlivejsie rozdelit dvom synom 4 kocky cisteho zlata, ktore maju hranu dlzky 3cm, 4cm, 5cm, 6cm . Navrhnite riesenie tak, aby sa nemuseli kocky rezat .
  • Double pravdepodobnosť
    Pravdepodobnosť úspechu plánovanej akcie je 60%. Aká je pravdepodobnosť, že pri dvojnásobnom opakovaní tejto akcie sa aspoň raz dosiahne úspech?
  • Súčet alebo rovnaké
    Určite pravdepodobnost, že pri hode 2 kockami padne súčet 10 alebo rovnaké číslo na oboch kockách.
  • Sviatky
    Prosím o vypočítanie tohto príkladu pomocou Vennových rovníc: Pýtali sa 73 študentov, či majú radi vianoce či veľká noc. 34 z nich má rado jeden zo sviatkov. 39 má rado Veľká noc a dvakrát toľko je študentov, ktorí majú radi obaja sviatky, než je tých, kt
  • V triede 12
    V triede je 35 detí, 23 z nich má brata a 27 z nich má sestru. Koľko deti má brata aj sestru, keď je v triede 5 detí, ktoré nemajú brata ani sestru?
  • Chlapci a dievčatá 4
    V triede je 36 žiakov. 9 dievčat nosi okuliare. Chlapcov s okuliarmi je o 5 menej ako dievčat bez okuliarov. Chlapcov bez okuliarov je 2-krát viac ako dievčat bez okuliarov. Koľko je chlapcov a koľko dievčat?
  • Zrmrzlina a čokoláda
    Na školskom výlete si z 28 detí 17 kúpilo v cukrárni zmrzlinu alebo čokoládu. 12 detí si kúpilo čokoládu, 9 zmrzlinu. Koľko detí si kúpilo zmrzlinu aj čokoládu? Koľko detí si nekúpilo zmrzlinu? Koľko detí si nekúpilo čokoládu?
  • Každý 3
    Každý žiak deviatej triedy sa zúčastnil aspoň jednej z troch exkurzií. Na každej exkurzii mohlo byť vždy 15 žiakov. 7 účastníkov prvej exkurzie sa zúčastnilo aj druhej, 8 účastníkov prvej a 5 účastníkov druhej exkurzie sa zúčastnilo aj tretej. 4 žiaci sa
  • MO Z7–I–3 2019
    Roman má rád kúzla a matematiku. Naposledy čaroval s trojcifernými alebo štvorcifernými číslami takto: • z daného čísla vytvoril dve pomocné čísla tak, že ho rozdelil medzi ciframi na mieste stoviek a desiatok (napr. Z čísla 581 by dostal 5 a 81), • pomoc
  • V Kocúrkove - Z8-I-6 2019 MO
    V Kocúrkove používajú mince iba s dvoma hodnotami, ktoré sú vyjadrené v kocúrkovských korunách kladnými celými číslami. Pomocou dostatočného množstva takých mincí je možné zaplatiť akúkoľvek celočíselnú sumu väčšiu ako 53 kocúrkovských korún, a to presne
  • MO B 2019 - uloha 2
    Prirodzené číslo n má aspoň 73 dvojciferných deliteľov. Dokážte, že jedným z nich je číslo 60. Uveďte tiež príklad čísla n, ktoré má práve 73 dvojciferných deliteľov, vrátane náležitého zdôvodnenia.

Máš zaujímavý príklad alebo úlohu, ktorý nevieš vypočítať? Vlož úlohu a my Ti ju skúsime vypočítať.



Na túto emailovú adresu Vám odpovieme riešenie; vyriešené príklady pribúdajú aj tu. Ak ju uvediete, uveďte ju bezchybne a skontrolujte si či nemáte plný mailbox.



Množiny - príklady. Úvaha - príklady.