Vektorový součet

Velikost vektoru u je 4, vektoru v je 10. Vektory svírají úhel 60 °.
Jaká je velikost vektoru u + v?

Výsledek

x =  12.49

Řešení:

Textové řešení x =







Napište nám komentář ke příkladu (úlohe) a jeho řešení (například pokud je stále něco nejasné nebo máte jiné řešení, nebo příklad nevíte vypočítat, nebo-li řešení je nesprávné...):

0 komentářů:
1st comment
Buďte první, kdo napíše komentář!
avatar




Základem výpočtů v analytické geometrii je dobrá kalkulačka rovnice přímky, která ze souřadnic dvou bodů v rovině vypočítá smernicový, normálový i parametrický tvar přímky, směrnici, směrový úhel, směrový vektor, délku úsečky, průsečíky se souřadnicovým osami atd. Dva vektory určeny velikostmi a vzájemným úhlem sčítá naše kalkulačka sčítání vektorů . Kosinovú větu přímo používá kalkulačka SUS trojúhelníku. Vyzkoušejte také naši trigonometrickou trojúhelníkovou kalkulačku.

Další podobné příklady a úkoly:

  1. Vektory - základní operace
    vectors_1 Dáno jsou body A [-9; -2] B [2; 16] C[16; -2] a D[12; 18] a. Určitě souřadnice vektorů u = AB v = CD s = DB b. Vypočítejte vektorový součet u + v c. Vypočítejte rozdíl vektorů u-v d. Určitě souřadnice vektoru w = -7.u
  2. Vektor PQ
    vectors_2 Ze zadaných souřadnic bodů P = (5, 8) a Q = (6, 9), najděte souřadnice a velikost vektoru PQ.
  3. Vektor
    vectors Určitě souřadnice vektoru u=CD, když C[9;16], D[-2,0].
  4. Skalární součin
    dot_product Vypočítejte u.v když |v| = 5, |v| = 2 a když vektory u, v, svírají úhel: a) 60° b) 45° c) 120°
  5. Těžnice
    taznice3 Trojúhelník ABC v rovině Oxy; jsou dány souřadnice bodů: A = 2,7 B = -4,3 C = 6, -1 Zkuste vypočítet všechny těžnice a všechny délky stran.
  6. Navigace lodě
    navigation Loď pluje 84 km na kurzu 17° a pak cestuje na kurzu 107° 135 km. Najděte vzdálenost konce cesty z výchozího bodu a zaokrouhlete je na nejbližší kilometr.
  7. Směrový vektor
    vectors_3 A(5;-4) B(1;3) C(-2;0) D(6;2) Vypočítej směrový vektor a) a=AB b) b= BC c) c=CD
  8. Výška parametrická
    vectors_3 Napište parametrické rovnice výšky Vc v trojúhelníku ABC: A=[5;6], B=[-2;4], C=[6;-1]
  9. Kolineární body
    collinear Ukažte, že body A (-1,3), B (3,2), C (11,0) jsou kolineární (leží na jedné přímce).
  10. Přímka
    img2 Přímka p prochází bodem A[-7, -10] a má směrový vektor v=(-3, 0). Leží bod B[23, -10] na přímce p?
  11. Trojúhelník ABC 2
    CountingTrianglesT Trojúhelník ABC má délky stran a = 14 cm, b = 20 cm, c = 7,5 cm. Zjisti velikosti úhlů a obsah tohoto trojúhelníku.
  12. Těžiště
    triangle_axis Vypočítejte souřadnice těžiště T [x, y] trojúhelníku ABC; A[11,4] B[13,-7] C[-17,-18]
  13. Strana c
    trig-cos-law V △ABC a =2, b=7 a ∠ C = 100°. Vypočítejte délku strany c.
  14. Největší
    triangles_4 Vypočtěte největší úhel trojuhelníku o stranách 197, 208, 299.
  15. Hora vysoká
    mountain Z krajních bodů základny 240m dlouhé a skloněné o úhel 18°15' je vidět vrchol hory ve výškových úhlech 43° a 51°. Jak je hora vysoká?
  16. Zo 6 na 3
    thales_1 Chceme dokázat sporem tvrzení: Pokud je přirozené číslo n rozdělitelné šesti, potom n je dělitelné třemi. Z jakého předpokladu budeme vycházet?
  17. Věty
    pyt_triangle Z které věty přímo vyplývá platnost Pythagorovy věty v pravoúhlém trojúhelníku? ?