Strany a ťažnice

Trojuholník ABC v rovine Oxy; sú dané súradnice bodov:
A = 2,7
B = -4,3
C = 6, -1

Skúste vypočítať všetky ťažnice a všetky dĺžky strán.

Správny výsledok:

a =  10,7703
b =  8,9443
c =  7,2111
t1 =  6,0828
t2 =  8
t3 =  9,2195

Riešenie:

a=BC a=(46)2+(3(1))2=2 29=10.7703
b=AC b=(26)2+(7(1))2=4 5=8.9443
c=AB c=(2(4))2+(73)2=2 13=7.2111

Vyskúšajte výpočet cez kalkulačku trojuholníkov.

t1=2 b2+2 c2a2/2=2 8.94432+2 7.2111210.77032/2=37=6.0828
t2=2 c2+2 a2b2/2=2 7.21112+2 10.770328.94432/2=8
t3=2 b2+2 a2c2/2=2 8.94432+2 10.770327.21112/2=85=9.2195



Budeme veľmi radi, ak nájdete chybu v príklade, pravopisné chyby alebo nepresnosť a ju nám prosím pošlete. Ďakujeme!






Zobrazujem 0 komentárov:
avatar




Tipy na súvisiace online kalkulačky
Základom výpočtov v analytickej geometrií je dobrá kalkulačka rovnice priamky, ktorá zo súradníc dvoch bodov v rovine vypočíta smernicový, normálový aj parametrický tvar priamky, smernicu, smerový uhol, smerový vektor, dĺžku úsečky, priesečníky so súradnícovými osami atď.
Dva vektory určené veľkosťami a vzájomným uhlom sčíta naša kalkulačka sčítania vektorov.
Pytagorova veta je základ výpočtov aj kalkulačky pravouhlého trojuholníka.
Pozrite aj našu trigonometrickú trojuholníkovu kalkulačku.

 
Odporúčame k tejto úlohe z matematiky si pozrieť toto výukové video: video1   video2   video3   video4

Ďaľšie podobné príklady a úlohy:

  • Trojuholník KLM
    triangle_rt_taznice Dané sú body K( -3; 2), L(-1; 4), M(3, -4). Zistite: a) či je trojuholník KLM pravouhlý b) vypočítajte dĺžku ťažnice na stranu k c) napíšte súradnice vektora LM d) napíšte smernicový tvar strany KM e) napíšte smernicový tvar osi strany KM
  • V rovine
    medians V rovine je daný trojuholník ABC. A(-3,5), B(2,3), C(-1,-2) zapíšte súradnice vektorov u, v, w ak u=AB, v=AC, w=BC. Zapíšte súradnice stredov úsečiek SAB(. .), SAC(. .. ), SBC(. .. )
  • Súradnice stran, výsek, osí
    triangle_rt_taznice Je daný trojuholník ABC: A (-2,3), B (4, -1), C (2,5). Určte všeobecné rovnice priamok, na ktorých ležia,: a) strana AB, b) výška Vc, c) Os strany AB, d) Ťažnice ta
  • Súradnice ťažiska
    triangle_234 Nech A = [3, 2, 0], B = [1, -2, 4] a C = [1, 1, 1] sú 3 body v priestore. Vypočítajte súradnice ťažiska △ ABC (je to priesečník ťažníc).
  • Sú dané
    vectors_sum0 Sú dané vektory a = (4,2), b = (- 2,1). Vypočítajte: a) |a+b|, b) |a|+|b|, c) |a-b|, d) |a|-|b|.
  • Trojuholník PRT
    triangles_5 V rovnoramennom pravouhlom trojuholníku ABC s pravým uhlom pri vrchole C platí o súradniciach bodov: A (-1, 2); C (-5, -2) Vypočítajte dĺžku strany AB.
  • Štvoruholník
    quadrilateral Ukážte, že štvoruholník s vrcholmi P1 (0,1), P2 (4,2) P3 (3,6) P4 (-5,4) má dva pravé trojuholníky.
  • Polohový vektor
    speed_2 Polohový vektor hmotného bodu, ktorý sa pohybuje v rovine, je možné v zavedenej vzťažnej sústave vyjadriť vzťahom: r(t) = (6t2+ 4t ; 3t + 1) kde t je čas v sekundách a súradnice vektora sú v metroch. Vypočítajte: a) aká je poloha hmotného bodu v čase t =
  • Polohový 2
    speed2_1 Polohový vektor hmotného bodu, ktorý sa pohybuje v rovine, je možné v zavedenej vzťažnej sústave vyjadriť vzťahom: r(t) = (1 + 5t + 2t2 ; 3t + 1), kde t je čas v sekundách a súradnice vektora sú v metroch. Vypočítajte: a) aká je poloha hmotného bodu v ča
  • Vypočítejte
    stredna_priecka_1 Vypočítejte vzdialenosť bodov X [1,3] od stredu úseku x = 2-6t, y = 1-4t; t je .
  • Guľa
    sphere2 Získajte rovnicu guľovej plochy so stredom na čiare 3x + 2z = 0 = 4x-5y a prechádza bodmi (0, -2, -4) a (2, -1,1).
  • Jednotkový 2D
    one_1 Zistite jednotkový vektor (jeho súradnice) k vektoru AB ak A[-6; 8], B[-18; 10].
  • Kolmé 3D vektory
    3dperpendicular Nájdite vektor a = (2, y, z) tak, aby a⊥b a ⊥ c kde   b = (-1, 4, 2) a c = (3, -3, -1)
  • Súradnice vrcholov
    PQR_triangle Sú dané súradnice vrcholov trojuholníka: P (-12,6), Q (4,0), R (-8, -6). Načrtnite obrázok trojuholníka. Nájdite obsah trojuholníka.
  • Vrcholy trojuholníka
    right_triangle_5 Ukážte, že body D (2,1), E (4,0), F (5,7) sú vrcholy pravouhlého trojuholníka.
  • Na priamke
    primka Na priamke p: x = 4 + t, y = 3 + 2t, t sú R, určte bod C, ktorý má rovnakú vzdialenosť od bodov A [1,2] a B [-1,0].
  • Tri body
    abs1_1 Sú dané tri body v rovine A (-3; -5) B (9; -10) a C (2; k). Dĺžka AB = AC Aká je hodnota k?