Menej než 500 oviec

Je menej než 500 oviec, ale keď sa postaví do dvojradu, trojradu, štvorradu, päťradu alebo šesťradu, zakaždým zostane jedna ovca.
Ale môžu sa zoradiť do sedemradu. Koľko je oviec?

Výsledok

n =  301

Riešenie:

a%b = a modulo b

n=7: n%2=1, n%3=1, n%4=3, n%5=2, n%6=1, n%7=0
n=14: n%2=0, n%3=2, n%4=2, n%5=4, n%6=2, n%7=0
n=21: n%2=1, n%3=0, n%4=1, n%5=1, n%6=3, n%7=0
n=28: n%2=0, n%3=1, n%4=0, n%5=3, n%6=4, n%7=0
n=35: n%2=1, n%3=2, n%4=3, n%5=0, n%6=5, n%7=0
n=42: n%2=0, n%3=0, n%4=2, n%5=2, n%6=0, n%7=0
n=49: n%2=1, n%3=1, n%4=1, n%5=4, n%6=1, n%7=0
n=56: n%2=0, n%3=2, n%4=0, n%5=1, n%6=2, n%7=0
n=63: n%2=1, n%3=0, n%4=3, n%5=3, n%6=3, n%7=0
n=70: n%2=0, n%3=1, n%4=2, n%5=0, n%6=4, n%7=0
n=77: n%2=1, n%3=2, n%4=1, n%5=2, n%6=5, n%7=0
n=84: n%2=0, n%3=0, n%4=0, n%5=4, n%6=0, n%7=0
n=91: n%2=1, n%3=1, n%4=3, n%5=1, n%6=1, n%7=0
n=98: n%2=0, n%3=2, n%4=2, n%5=3, n%6=2, n%7=0
n=105: n%2=1, n%3=0, n%4=1, n%5=0, n%6=3, n%7=0
n=112: n%2=0, n%3=1, n%4=0, n%5=2, n%6=4, n%7=0
n=119: n%2=1, n%3=2, n%4=3, n%5=4, n%6=5, n%7=0
n=126: n%2=0, n%3=0, n%4=2, n%5=1, n%6=0, n%7=0
n=133: n%2=1, n%3=1, n%4=1, n%5=3, n%6=1, n%7=0
n=140: n%2=0, n%3=2, n%4=0, n%5=0, n%6=2, n%7=0
n=147: n%2=1, n%3=0, n%4=3, n%5=2, n%6=3, n%7=0
n=154: n%2=0, n%3=1, n%4=2, n%5=4, n%6=4, n%7=0
n=161: n%2=1, n%3=2, n%4=1, n%5=1, n%6=5, n%7=0
n=168: n%2=0, n%3=0, n%4=0, n%5=3, n%6=0, n%7=0
n=175: n%2=1, n%3=1, n%4=3, n%5=0, n%6=1, n%7=0
n=182: n%2=0, n%3=2, n%4=2, n%5=2, n%6=2, n%7=0
n=189: n%2=1, n%3=0, n%4=1, n%5=4, n%6=3, n%7=0
n=196: n%2=0, n%3=1, n%4=0, n%5=1, n%6=4, n%7=0
n=203: n%2=1, n%3=2, n%4=3, n%5=3, n%6=5, n%7=0
n=210: n%2=0, n%3=0, n%4=2, n%5=0, n%6=0, n%7=0
n=217: n%2=1, n%3=1, n%4=1, n%5=2, n%6=1, n%7=0
n=224: n%2=0, n%3=2, n%4=0, n%5=4, n%6=2, n%7=0
n=231: n%2=1, n%3=0, n%4=3, n%5=1, n%6=3, n%7=0
n=238: n%2=0, n%3=1, n%4=2, n%5=3, n%6=4, n%7=0
n=245: n%2=1, n%3=2, n%4=1, n%5=0, n%6=5, n%7=0
n=252: n%2=0, n%3=0, n%4=0, n%5=2, n%6=0, n%7=0
n=259: n%2=1, n%3=1, n%4=3, n%5=4, n%6=1, n%7=0
n=266: n%2=0, n%3=2, n%4=2, n%5=1, n%6=2, n%7=0
n=273: n%2=1, n%3=0, n%4=1, n%5=3, n%6=3, n%7=0
n=280: n%2=0, n%3=1, n%4=0, n%5=0, n%6=4, n%7=0
n=287: n%2=1, n%3=2, n%4=3, n%5=2, n%6=5, n%7=0
n=294: n%2=0, n%3=0, n%4=2, n%5=4, n%6=0, n%7=0
n=301: n%2=1, n%3=1, n%4=1, n%5=1, n%6=1, n%7=0 <<<<<<=====







Napíšte nám komentár ku príkladu a riešeniu (napríklad ak je stále niečo nejasné...):

Zobrazujem 0 komentárov:
1st comment
Buďte prvý, kto napíše komentár!
avatar




Chceš si vypočítať najmenší spoločný násobok dvoch alebo viacerých čísel?

Ďaľšie podobné príklady:

  1. Kytice
    flowers_1 Záhradník viazal kytice po 8 kvetoch a žiadny mu neostal. Potom zistil, že mohol viazať kytice po 6 kvetoch a tiež by mu žiadny neostal. Koľko mal záhradník minimálne a maximálne kvetov, ak ich mal viac ako 50 a menej ako 100?
  2. Rozdelenie
    ratios_2 Riaditeľ školy uvažoval či rozdelenie žiakov pri orientačnom závode do skupín po 4,5,6,9 alebo 10. Koľko musí mať najmenej škola žiakov ak sú možné všetky varianty?
  3. Poleno
    5962705_ad Robotník porezal hrubé poleno na 6 ks za 30 min. Za ako dlho porezal poleno na 12 ks?
  4. Rukavice 3
    rukavice_2 V zásuvke je 5 párov zelených a 6 párov modrých rukavíc uložených šiestackym spôsobom ( bez ladu a skladu). Koľko rukavíc musíš naslepo vybrať, aby bol vonku určite pár rovnakej farby?
  5. Odvoz tehál
    bricks_5 Autom odviezli na 7krát X tehál. Koľko tehál odviezli na jeden krát, ak vždy naložili rovnaký počet tehál?
  6. Myška hryzka
    mouses Myška hryzka má 27 kociek, ktoré k sebe poskladala do veľkej kocky. Potom na každej strane vyhryzala prostrednú kocočku a ešte kocočku uprostred. Myška má 4 deti. Potom pozdĺžne kocku rozrieši. Koľko kociek a aký tvar dostanú 4 myšky?
  7. Zápis dekadických čísel
    numbers_34 Napíš v desiatkovej sústave skrátený aj rozvinutý zápis týchto čísel: a) štyritisíc sedemdesiat deväť b) päťsto jeden tisíc šesťsto desať c) deväť miliónov dvadsať šesť
  8. Prístav
    port V prístave kotvia štyri lode. Spoločne vyplávajú z prístavu. Prvá loď sa do prístavu vracia vždy po dvoch týždňoch, druhá po 4, tretia po 8 a štvrtá po 12 týždňoch. O koľko týždňov sa prvýkrát zase všetky lode stretnú v prístave?
  9. Násobilka
    numbers2_21 Koľko prirodzených čísel menších ako 301 možno vytvoriť z číslic 0,1,2,3,6,7?
  10. Ozubené súkolie
    prevod Ozubené súkolesie je zostavené z dvoch kôl, jedno má 88 a druhej 56 zubov. Koľkokrát sa otočí menšie koleso, aby do seba kola zapadala rovnakými zuby ako na začiatku? Koľkokrát sa otočí väčšie koleso?
  11. Ozubené súkolie
    ozub_kola V ozubenom súkolí zapadá koliesko s 20 zubami do kolieska s 36 zubami. Pred spustením stroja je zafarbený zub menšieho kolieska v označenej medzere medzi zubami väčšieho kolieska. Koľkokrát sa po spustení stroja kolieska otočí, než zafarbený zub opäť zapad
  12. ABC+DEF=GHIJ
    numbers_49 ABC+DEF=GHIJ nahrad písmená číslicami tak, aby bol súčet správny(rôzne písmená-rôzne číslice)
  13. Prirodzené číslo
    numbers2_49 Aké je najmenšie prirodzené číslo deliteľné 2,5,7,8 a 15?
  14. Symboly
    my Ak 2*3 = 60 ; 3*4 = 120 a 4*5 = 200, koľko je 2*5?
  15. Test ma
    test_10 Test ma 50 otázok. Za každú správnu odpoveď sa započítaju 4 body, za nesprávnu ospoveď sa odrátajú 3 body, za nezodpovedanú otázku sa odratávajú 2 body. Peter získal z testu 108 bodov, pričom nezodpovedal 6 otázok. Na koľko otázok Peter odpovedal nesprávne
  16. Janka a Danka
    books_3 Janka a Danka začali čítať v ten istý deň knihu. Jankina mala 276 strán, Dankina 204 strán. Dohodli sa, že obe prečitajú každý deň rovnaký počet strán, až kým svoju knihu nedočítaju do konca. A) Koľko najviac strán malo denne prečítať, aby dodržali svo
  17. Trojnásobok
    numbers_6 Trojnásobok čísla zmenšeného o 10 je o toľko väčší než 100, o koľko je 100 viac než dvojnásobok tohto čísla. Ktoré je to číslo?