Pán Cuketa

Pán Cuketa mal obdĺžnikovú záhradu, ktorej obvod bol 28 metrov. Obsah celej záhrady vyplnili práve štyri štvorcové záhony, ktorých rozmery v metroch boli vyjadrené celými číslami. Určite aké rozmery mohla mať záhrada. Nájdite všetky možnosti a zapíšte n ako počet riešení.

Výsledok

n =  2

Riešenie:

Textové riešenie n =







Napíšte nám komentár ku príkladu a riešeniu (napríklad ak je stále niečo nejasné...):

Zobrazujem 3 komentáre (5 odpovedí celkovo):
#1
Peter2
Ťahák: Uvedomte si, že štvorce nemusia mať rovnaké rozmery.

Možné riešenie. Obvod 28 = 2 · 14 metrov možno pomocou kladných celých čísel vyjadriť len niekoľko málo spôsobmi. Postupne všetky preberieme a zistíme, či možno zodpovedajúce záhon rozdeliť na štyri štvorce s celočíselnými rozmermi:

• 28 = 2 · (13 + 1), v takom prípade potrebujeme 13 štvorcov
• 28 = 2 · (12 + 2), v takom prípade potrebujeme najmenej 6 štvorcov
• 28 = 2 · (11 + 3), v takom prípade potrebujeme najmenej 6 štvorcov
• 28 = 2 · (10 + 4), v takom prípade stačí 4 štvorce
• 28 = 2 · (9 + 5), v takom prípade potrebujeme najmenej 6 štvorcov
• 28 = 2 · (8 + 6), v takom prípade stačí 4 štvorce
• 28 = 2 · (7 + 7), v takom prípade by bol záhon štvorcový a nie obdĺžnikový.

Záhrada mohla mať rozmery 10 × 4 alebo 8 × 6 metrov.

Iné riešenie. Uvažujme, ako možno zložiť jeden obdĺžnik zo štyroch štvorcov (všeobecne rôznych celočíselných rozmerov). To možno urobiť iba nasledujúcimi spôsobmi:

Ak veľkosť strany najmenšieho štvorca v metroch označíme a, potom obvod obdĺžnika v jednotlivých prípadoch je:

• 2 · (4a + a) = 10a, čo nie je presne 28 pre žiadne celé a.
• 2 · (5a + 2a) = 14a, čo je presne 28, práve keď a = 2; obdĺžnik má v takom prípade rozmery 10 × 4 metrov.
• 2 · (5a + 3a) = 16a, čo nie je presne 28 pre žiadne celé a.
• 2 · (4a + 3a) = 14a, čo je presne 28, práve keď a = 2; obdĺžnik má v takom prípade rozmery 8 × 6 metrov.

#2
Hana
Mohli by ste mi to prosim vysvetlit niak tak jednoduchsie?

#1
A celkovo napisat ten postup prosim ? Ja tomu nerozumiem :(

#1
Ahoj Hana; no v prípade MO sa nejedná o ľahké príklady, ktorým musí rozumieť každý.  Ale tým že toto riešenie (vlastne dve) budeš študovať možno aj týždne,  sa niečo nové naučíš...

#3
Hana
Tak dakujem este sa to pokusim pochopit :)

avatar









Ďaľšie podobné príklady:

  1. Obdĺžniky
    rectangles Koľko je obdĺžnikov, ktorých dĺžky strán sú vyjadrené prirodzenými číslami a majú obsah 3002 cm2?
  2. PIN kód
    pin_2 PIN na Mišovej kreditke je štvorciferné číslo. Mišo o ňom kamarátom prezradil: • Je to prvočíslo – teda číslo väčšie ako 1, ktoré je deliteľné iba číslom jedna a sebou samým. • Prvá číslica zľava je väčšia ako druhá. • Druhá číslica zľava je väčšia ako.
  3. Dva autobusy
    bus27_14 1. Autobus jazdí po 15 minútach, 2. Autobus jazdí po 21 minútach. Spoločne obaja vyrážajú o 7:00 v pondelok. Kedy a ktorý deň sa stretnú?
  4. Krabica
    cuboid_20 Nájdite dĺžku, šírku a výšku krabice s minimálnym povrchom, do ktorého môžu byť zabalené 50 kvádrikov, každý s rozmermi 4 cm, 3 cm a 2 cm.
  5. Z9-I-4
    numbers_30 Katka si myslela päťciferné prirodzené číslo. Do zošita napísala na prvý riadok súčet mysleného čísla a polovice mysleného čísla. Na druhý riadok napísala súčet mysleného čísla a pätiny mysleného čísla. Na tretí riadok napísala súčet mysleného čísla a devä
  6. Deliteľe
    triangle_div Koľko rôznych deliteľov má číslo ??
  7. Kôpky
    euro_stacks Anička má celkom 702 eurocentov. Peniaze musia rozdeliť na rôzny počet kôpok tak, aby na každej kupca bol rovnaký počet eurocentov. Koľko má možností?
  8. Kombinácie
    circles Koľko je rôznych kombinácií 2-ciferného čísla delitelného číslom 4 vzniknutého z číslic 3, 5 a 7?
  9. Milan 4
    tricko_1 Milan zistil, že celkom 28-mimi rôznymi spôsobmi si môže obliecť nohavice a tričko. Koľko môže mať tričiek a nohavíc? Vypíš všetky možnosti.
  10. Kontajner
    cubes3_9 Kontajner tvaru kváder s vnútornými rozmermi 3,9 m, 3,25 m a 2,6 m bol úplne zaplnený tovarom v rovnakých kockatých krabiciach. Akú najdlhšia hranu mohla mať táto krabica?
  11. Tretia odmocnina
    30gon_1 Nájdite tretiu odmocninu z 18
  12. Prirodzené číslo
    numbers2_49 Aké je najmenšie prirodzené číslo deliteľné 2,5,7,8 a 15?
  13. Súčet dvoch prvočísel
    prime_1 Matematik Christian Goldbach zistil, že každé párne číslo väčšie ako 2 môže byť vyjadrené ako súčet dvoch prvočíselných čísel. Napíšte alebo vyjadrite 2018 ako súčet dvoch prvočísel.
  14. Deliteľnosť
    numbers2_49 Ak je 3c54d10 deliteľné číslom 330, aký je súčet c a d?
  15. 7 statočných
    7statocnych 8 hrdinov cvála na 8 koňoch za sebou. Koľkými spôsobmi ich možno zoradiť za sebou?
  16. Vlajky
    vlajka_cz Koľko rôznych vlajok možno vytvoriť z látok farby zelenej, oranžovej, modrej, žltej, bielej, červenej, fialovej tak aby každá vlajka sa skladala z troch rôznych farieb?
  17. Čísla
    ten Určite počet všetkých prirodzených čísel menších ako 4183444, ak každé je súčasne deliteľné 29, 7, 17. Aký je ich súčet?