Normálne rozloženie

Na jednej strednej škole sú známky normálne distribuované s priemerom 3,1 a štandardnou odchýlkou 0,4. Aké percento študentov na vysokej škole majú známky medzi 2,7 a 3,5?

Výsledok

p =  68.27 %

Riešenie:

Textové riešenie p =







Napíšte nám komentár ku príkladu a riešeniu (napríklad ak je stále niečo nejasné...):

Zobrazujem 0 komentárov:
1st comment
Buďte prvý, kto napíše komentár!
avatar




Naša kalkulačka na výpočet percent Vám pomôže rýchlo vypočítať rôzne typické úlohy s percentami. Chceš si dať zrátať kombinačné číslo? Hľadáte pomoc s výpočtom aritmetického priemeru? Hľadáte štatistickú kalkulačku?

Ďaľšie podobné príklady:

  1. Čakacia
    normal_d Čakacia doba v bufete sa riadi normálnym rozdelením so strednou hodnotou 130 sekúnd a rozptylom 400. Aká bude pravdepodobnosť, že niekto bude čakať menej ako minútu a pol?
  2. Totálna nekvalita
    socik2 Máme tri série výrobkov. Vyberieme na kontrolu kvality jeden výrobok. Určte pravdepodobnosť toho, že sa zistí nekvalitná výroba, ak v prvej sérii je 2/3, v druhej 7/9 a v tretej 3/4 kvalitných výrobkov.
  3. Zelená - červená
    balls_2 Máme 5 vrecúška / vrecia. V každom z nich je jedna zelená a 2 červené guličky. Z každého ťahám len jednu guľôčku. Aká je pravdepodobnosť, že nevytiahnem ani jednu zelenú?
  4. Karty
    cards_2 Predpokladajme, že v klobúku sú tri karty. Jedna z nich je červená na obidvoch stranách, jedna z nich je čierna na obidvoch stranách a tretia má jednu stranu červenú a druhú čiernu. Z klobúka náhodne vytiahneme jednu kartu, a vidíme, že jedna jej strana je
  5. Firma
    probability Firma doteraz vyrobila 500 000 áut a z toho 5000 bolo vadných. Aká je pravdepodobnosť, že z dennej produkcie 50 áut bude najviac jedno auto vadné?
  6. Jedna zelená
    gulicky V nádobe je 45 bielych a 15 zelených guličiek. Náhodne vyberieme 5 guličiek. Aká je pravdepodobnosť, že bude maximálne jedna zelená?
  7. Benzín a petrolej
    kerosene k 4 litre benzínu s obsahom 15% petroleja sú pridané do ďalších 7 litrov benzínu s obsahom 10% petroleja, aké percento benzínu je petrolej?
  8. Pre štatistický
    normal_d_2 Pre štatistický súbor 2.3; 3.4; 1.8; 3.2; 3.2; 1.9; 3.3; 4.5; 4.3; 5.0; 4.8; 4.3; 4.3; 1.9 určte výberový rozptyl a medián, a z empirickej distribučnej funkcie určte P(2.1 < ξ < 3.5).
  9. 3-priemer
    chart V prípade, že priemer (aritmetický priemer) z troch čísel x, y, z je 50. Aký je priemer čísel (3x +10), (3y +10), (3z+10)?
  10. Srdcia
    hearts_cards 4 kariet je vybraných ze štandardnej sady 52 hracích kariet (13 sŕdc) s vrátením. Aká je pravdepodobnosť, že vytiahneme 4 sŕdc po sebe?
  11. Rozptyl
    sdcalc Akú hodnotu nadobúda rozptyl dát v súbore ak vypočítaná smerodajná odchýlka = 2? a) Rozptyl = 6 b) Rozptyl = 4 c) Rozptyl = 9 d) Rozptyl = 2
  12. Ele spotrebiče
    tr_1 Pri elektrických spotrebičoch určitého druhu sa vyskytuje výrobná chyba s pravdepodobnosťou 0,1. Pri výrobkoch s uvedenou chybou dochádza v záručnej dobe k poruche s pravdepodobnosťou 0,5. Výrobky, ktoré nemajú výrobnú chybu, vykazujú poruchu v záručnej do
  13. Guličky
    stats Máme n-rovnakých gulí (číslované od 1-n), vyberajú sa bez vracania. Urči: 1) Pravdepodobnosť, že aspoň pri 1 ťahu sa číslo ťahu zhoduje s číslom gule? 2) Určiť strednú hodnotu a rozptyl počtu gulí, kde sa zhoduje číslo gule s číslom poradí.
  14. Nádoby 2
    gule_4 V prvej nádobe máme 3 biele a 6 čiernych guľôčok. V druhej nádobe máme 2 biele a 6 čiernych guľôčok. Z prvej nádoby náhodne preložíme do druhej nádoby 1 guľôčku. Aká je pravdepodobnosť, že potom z druhej nádoby vyberiem 2 biele guľôčky?
  15. V krabici
    gulky_7 V krabici je 8 loptičiek, z nich sú 3 nové. Pre prvú hru sa z krabice vyberú náhodne 2 loptičky, ktoré sa po hre vrátia späť ! Pre druhú hru sa opäť náhodne vyberú 2 loptičky, aká je pravdepodobnosť toho že obe už boli použité?
  16. Gule
    spheres Z osudia, v ktorom je 7 gulí bielych a 17 červených, ťaháme postupne 3-krát bez vrátenia. Aká je pravdepodobnosť, že vytiahneme gule v poradí: red red red?
  17. Dôkaz sporom
    thales_1 Chceme dokázať sporom tvrdenie: Ak je prirodzené číslo n deliteľné šiestimi, potom je n deliteľné tromi. Z akého predpokladu budeme vychádzať?