Z9-I-6 MO 2017

Na priamke predstavujúcej číselnú os uvážte navzájom rôzne body zodpovedajúce číslam a, 2a, 3a + 1 vo všetkých možných poradiach. Pri každej možnosti rozhodnite, či je také usporiadanie možné. Ak áno, uveďte konkrétny príklad, ak nie, zdôvodnite
prečo.

Výsledok

a1 =  1
a2 =  -5
a3 =  -0.75
a4 =  -0.25

Riešenie:

Textové riešenie a1 =
Textové riešenie a2 =
Textové riešenie a3 =
Textové riešenie a4 =







Napíšte nám komentár ku príkladu a riešeniu (napríklad ak je stále niečo nejasné...):

Zobrazujem 1 komentár:
#1
Dr Math
skuste za a napriklad tieto cisla a dostanete 4 usporiadania.... (ako v priklade)
a1 = 1
a2 = -5
a3 = -0.75
a4 = -0.25

Totiz ciselnu os delia zlomove body - D = { -1, -0.5, 0 } , cize na 4 casti.... Ine mozne usporiadania nie je mozne dostat. V zlomovych bodoch dochadza k rovnosti bodov....

avatar









Na vyriešenie tohto príkladu sú potrebné tieto znalosti z matematiky:

Ďaľšie podobné príklady:

  1. Posledná cifra
    olympics_3 Aké je posledné číslo 2016-tej mocniny čísla 2017?
  2. Pyramída Z8–I–6
    pyramida_mo Každá tehlička zobrazenej pyramídy obsahuje jedno číslo. Kedykoľvek to je možné, je číslo v každej tehličke najmenším spoločným násobkom čísel z dvoch tehličiek ležiacich priamo nad ňou. Ktoré číslo môže byť v najspodnejšej tehličke? Určite všetky možnosti
  3. Z6–I–5 MO 2018
    olympics_9 V nasledujúcom príklade na sčítanie predstavujú rovnaké písmená rovnaké cifry, rôzne písmená rôzne cifry: RATAM RAD -------------- ULOHY Nahraďte písmená ciframi tak, aby bol príklad správne. Nájdite dve rôzne nahradenia.
  4. Trojciferné 6
    seven Koľko existuje trojcifernych prirodzených čísel v ktorých sa nevyskytuje číslica 7?
  5. MO Z8 – I – 4 2018
    olympics_8 Na štyroch kartičkách boli štyri rôzne cifry, z ktorých jedna bola nula. Vojto z kartičiek zložil čo najväčšie štvorciferné číslo, Martin potom čo najmenšie štvorciferné číslo. Adam zapísal na tabuľu rozdiel Vojtovho a Martinovho čísla. Potom Vojto z karti
  6. MO-I-Z6
    stvorec_4 Štvorec so stranou 4 cm je rozdelený na štvorčeky so stranou 1 cm ako na obrázku. Rozdeľte štvorec pozdĺž vyznačených čiar na dva útvary s obvodom 16 cm. Nájdite aspoň tri rôzne riešenia (tzn. také tri riešenia, aby žiadny útvar jedného riešenia nebol zhod
  7. Domček Z9–I–5
    Mysky Myšky si postavili podzemný domček pozostávajúci z komôrok a tunelkov: • každý tunel vedie z komôrky do komôrky (tzn. žiadny nie je slepý), • z každej komôrky vedú práve tri tunely do troch rôznych komôrok, • z každej komôrky sa dá tunelom dostať do ktore
  8. Z6–I–1 MO 2018
    hrusky_8 Ivan a Mirka sa delili o hrušky v mise. Ivan si vždy berie dve hrušky a Mirka polovicu toho, čo v mise ostáva. Takto postupne odoberali Ivan, Mirka, Ivan, Mirka a nakoniec Ivan, ktorý vzal posledné dve hrušky. Určite, kto mal nakoniec viac hrušiek a o ko
  9. Z9 – I – 6 2018 MO
    numbers2_49 Prirodzené číslo N nazveme bombastické, ak neobsahuje vo svojom zápise žiadnu nulu a ak žiadne menšie prirodzené číslo nemá rovnaký súčin cifier ako číslo N. Peter sa najskôr zaujímal o bombastické prvočísla a tvrdil, že ich nie je veľa. Vypíšte všetky dvo
  10. Pán Baran
    sheep Keď pán Baran zakladal chov, mal bielych ovcí o 8 viac nez čiernych. V súčasnosti má bielych ovcí štyrikrát viac ako na začiatku a čiernych trikrát viac ako na začiatku. Bielych oviec je teraz o 42 viac než čiernych. Koľko teraz pán Baran chová bielych a č
  11. Z9–I–2
    map_mo Z bodu A do bodu C vedie náučný chodník prechádzajúci bodom B a inakadiaľ tiež červená turistická značka, pozri obrázok. Okrem toho sa dá použiť aj nezakreslená skratka dlhá 1500 metrov začínajúca v A a ústiaca na náučnom chodníku. Vojtech zistil, že • vý
  12. KSM 2018 Matik
    kone_dzokej_6 Počas sto dní každý zo šiestich koní jedol práve 75 dní. Koľko najviac a koľko najmenej mohlo byť dní, počas ktorých jedlo aspoň päť koní?
  13. Číslice
    num_2 Dagmar písala na počítači čísla(bez medzier) 45678910111213141516.. . Ktorú číslicu napísala na tristom mieste?
  14. Zákusky Z8-I-5
    cukriky_5 Mamička doniesla 10 zákuskov troch druhov: kokosiek bolo menej ako laskonek a najviac bolo karamelových kociek. Jaro si vybral dva zákusky rôznych druhov, Štefan urobil to isté a na Marcelu ostali len zákusky rovnakého druhu. Koľko kokosiek, laskonek a kar
  15. MO Z9-I-3 2018
    cinema2_14 V našom meste sú tri kiná, ktorým sa hovorí podľa svetových strán. O ich otváracích hodinách je známe, že: • každý deň je otvorené aspoň jedno kino, • ak je otvorené južné kino, tak nie je otvorené severné kino, • nikdy nie je otvorené súčasne severné a
  16. Štyria kamaráti
    compass4 Na lyžiarske sústredene prišli štyria kamaráti zo 4 svet svetových strán a viedli nasledujúci rozhovor. Karol: "Neprišiel som zo severu ani z juhu. " Mojmír: "Zato ja som prišiel z juhu. " Jozef: "Prišiel som zo severu. " Zdeno: "Ja som z juhu neprišie
  17. Číslo 111 2
    scientific_1 Číslo 111 rozdeľ na 3 sčítance tak aby každý bol o 2 väčší ako predchádzajúce.