Neznáme číslo

Neznáme číslo je deliteľné práve tromi rôznymi prvočíslami. Keď tieto prvočísla porovnáme vzostupne, platí nasledujúce:
• Rozdiel druhého a prvého prvočísla je polovicou rozdielu tretieho a druhého prvočísla.
• Súčin rozdielu druhého a prvého prvočísla s rozdielom tretieho a druhého prvočísla je násobkom 17.

Určte najmenšie číslo, ktoré má všetky vyššie uvedené vlastnosti.

Výsledok

n =  2014

Riešenie:

2014= 2 × 19 × 53
$primes = array(2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67);
for($a=0;$a<count($primes); $a++)
{
    for($b=$a+1;$b<count($primes); $b++)
    {
        for($c=$b+1;$c<count($primes); $c++)
        {
            $p1 = $primes[$a];
            $p2 = $primes[$b];
            $p3 = $primes[$c];

            if($p2-$p1 == 0.5*($p3-$p2) &&  mod(($p2-$p1)*($p3-$p2),17)==0)
            {
                $rv[$p1*$p2*$p3] = "$p1 $p2 $p3";
            }

        }
    }

}
ksort($rv);
print_r($rv);

Textové riešenie n =







Napíšte nám komentár ku príkladu a riešeniu (napríklad ak je stále niečo nejasné...):

Zobrazujem 0 komentárov:
1st comment
Buďte prvý, kto napíše komentár!
avatar




Na vyriešenie tejto slovnej úlohy sú potrebné tieto znalosti z matematiky:

Ďaľšie podobné príklady:

  1. Dôkaz sporom
    thales_1 Chceme dokázať sporom tvrdenie: Ak je prirodzené číslo n deliteľné šiestimi, potom je n deliteľné tromi. Z akého predpokladu budeme vychádzať?
  2. Úžasné číslo
    numbers4 Úžasnými číslom nazveme také párne číslo, ktorého rozklad na súčin prvočísel má práve tri nie nutne rôzne činitele a súčet všetkých jeho deliteľov je rovný dvojnásobku tohto čísla. Nájdite všetky užasné čísla.
  3. Delitele
    divisors Súčet všetkých deliteľov istého nepárneho čísla je 2112. Určte, aký je súčet všetkých deliteĺov dvojnásobku tohto neznámeho čísla.
  4. Trojciferné
    primes Napíšte najmenšie trojciferné číslo, ktoré pri delení 5 a 7 dáva zvyšok 2.
  5. Z9 – I – 6 2018 MO
    numbers2_49 Prirodzené číslo N nazveme bombastické, ak neobsahuje vo svojom zápise žiadnu nulu a ak žiadne menšie prirodzené číslo nemá rovnaký súčin cifier ako číslo N. Peter sa najskôr zaujímal o bombastické prvočísla a tvrdil, že ich nie je veľa. Vypíšte všetky dvo
  6. Družstvá
    football_team Koľkými spôsobmi je možné rozdeliť 16 hráčov na dve 8 členné družstvá?
  7. Kombinácie
    circles Koľko je rôznych kombinácií 2-ciferného čísla delitelného číslom 4 vzniknutého z číslic 3, 5 a 7?
  8. Štyri čísla
    equations Nájdite také štyri čísla, ktorých súčet je 48 a ktoré majú tieto vlastnosti: ked od prvého odčítame 3, k druhému pripočítame 3, tretie vynásobíme tromi a štvrté vydelíme tromi, dostaneme rovnaký výsledok.
  9. Čebyševov vzorec
    ChebyshevSpiral Na odhadnutie počtu prvočísel menších ako x slúži tzv. Čebyševov vzorec: ? Odhadnite počet prvočísel menších ako 30300537.
  10. Koza 4
    bielakoza Slnko vychádza na východe od prístrešku a zapadá na západe. Koze by sa zišlo trochu tieňa, kde a aký druh stromu treba zasadiť , aby ho neobjedla?
  11. Bonboniéra
    bonbons_2 V bonboniére je 12 bonbónov, ktoré vyzerajú rovnako. Tri z nich sú plnené nugátom, štyri orieškom a päť krémom. Najmenej koľko bonbónov musí Ivan vybrať, aby mal istotu, že vyberie dva s rovnakou plnkou? ?
  12. 255 študentov
    fr_1 255 študentov istej strednej školy ovláda okrem anglického jazyka jeden ďalší jazyk. Nemecký jazyk ovláda o 23 žiakov viac než ruský jazyk. Francúzsky jazyk ovláda o 37 žiakov menej než nemecký jazyk. Koľko žiakov ovláda nemecký jazyk?
  13. Modelky
    modelka Na mole sú tri modelky : slečna Ružová , Zelená a Modrá. Každá má na sebe jednofarebné šaty : ružové, zelené a modré. ,, Zvláštne, " skonštatovala slečna Modrá. ,,Voláme sa Ružová, Zelená a Modrá, naše šaty sú ružové , zelené a modré, al žiadna z nás nemá.
  14. Pomer
    geometric_2 Určte podiel prvého a druhého člena GP, ak q=-0,3, a a3=5,4.
  15. Karty
    cards_2 Predpokladajme, že v klobúku sú tri karty. Jedna z nich je červená na obidvoch stranách, jedna z nich je čierna na obidvoch stranách a tretia má jednu stranu červenú a druhú čiernu. Z klobúka náhodne vytiahneme jednu kartu, a vidíme, že jedna jej strana je
  16. Akcia 2
    sale_7 V obchode predávajú 3 druhy koláčov: makový, tvarohový, lekvárový. Všetky stoja rovnako. Od včera platí nasledujúca ponuka: Ak si kúpite ľubovolných 8 takýchto koláčov, zaplatíte len za 5. O koľko percent menej zaplatím teraz za 8 takýchto koláčov?
  17. Bratská trojka
    vojaciky Juraj, Milan a Adrián majú spolu 93 vojačikov. Juraj má o 3 vojačikov viacej ako Milan. Adrián má o 15 vojačikov viacej ako Milan. Určite, koľko má každý z nich.