Mo - kružnice

Jirka sestrojil čtverec ABCD o straně 12 cm. Do tohoto čtverce narýsoval čtvrtkružnici k, která měla střed v bodě B a procházela bodem A, a půlkružnici l, která měla střed v polovině strany BC a procházela bodem B. Rád by ještě sestrojil kružnici, která by ležela uvnitř čtverce a dotýkala se čtvrtkružnice k, půlkružnice l i strany AB. Určete poloměr takové kružnice.

Výsledek

r =  3 cm

Řešení:

Textové řešení r =







Napište nám komentář ke příkladu a řešení (například pokud je stále něco nejasné ...):


Nejoblíbenější komentáře:
#
Peter2
Nápověda. Přemýšlejte, jak byste pomocí poloměru hledané kružnice vyjádřili vzdálenost
jejího středu od úsečky AB, příp. BC.

Možné řešení. Během řešení se odkazujeme na obrázek, v němž O značí střed strany BC, S značí střed Jirkovy vytoužené kružnice h, K značí dotykový bod kružnic h a k, L značí dotykový bod kružnic h a l a M značí dotykový bod kružnice h a úsečky AB. Dále budeme odkazovat na pomocný bod E, který je patou kolmice z bodu S na stranu BC. Hledaný poloměr kružnice h v cm označíme r.

Vzdálenost bodu S od úsečky AB je rovna r = |SM| = |EB|. Vzdálenost bodu S od úsečky BC je rovna velikosti úsečky SE, která je odvěsnou jak v pravoúhlém trojúhelníku SEO, tak v trojúhelníku SEB. Všechny zbylé strany v obou trojúhelnících snadno vyjádříme pomocí r; odtud pomocí Pythagorovy věty budeme umět určit neznámou r.

Body S a O jsou středy kružnic h a l, které se dotýkají v bodě L. Tyto tři body leží na jedné přímce, vzdálenost SO je proto rovna.

|SO| = |SL| + |LO| = r + 6

Obdobně, vzdálenost SB je rovna

|SB| = |BK| − |KS| = 12 − r

neboť S a O jsou středy kružnic h a k a K je jejich dotykovým bodem. Vzdálenost OE je rovna:

|OE| = |OB| − |BE| = 6 − r

Odtud a z Pythagorovy věty v trojúhelnících SEO a SEB dostáváme:
|SE|² = |SO|² − |OE|² = |SB|² − |BE|²

(6 + r)² − (6 − r)² = (12 − r)² − r²

12r + 12r = 144 − 24r,
48r = 144,
r = 3.
Poloměr hledané kružnice je 3 cm

3 roky  5 Likes
3 komentáře:
#
Ahoj
A zdůvodnení??

#
Žák
velice by mě zajímal důkaz, že poloměr je opravdu 3 cm. Věděl by někdo?

#
Peter2
Nápověda. Přemýšlejte, jak byste pomocí poloměru hledané kružnice vyjádřili vzdálenost
jejího středu od úsečky AB, příp. BC.

Možné řešení. Během řešení se odkazujeme na obrázek, v němž O značí střed strany BC, S značí střed Jirkovy vytoužené kružnice h, K značí dotykový bod kružnic h a k, L značí dotykový bod kružnic h a l a M značí dotykový bod kružnice h a úsečky AB. Dále budeme odkazovat na pomocný bod E, který je patou kolmice z bodu S na stranu BC. Hledaný poloměr kružnice h v cm označíme r.

Vzdálenost bodu S od úsečky AB je rovna r = |SM| = |EB|. Vzdálenost bodu S od úsečky BC je rovna velikosti úsečky SE, která je odvěsnou jak v pravoúhlém trojúhelníku SEO, tak v trojúhelníku SEB. Všechny zbylé strany v obou trojúhelnících snadno vyjádříme pomocí r; odtud pomocí Pythagorovy věty budeme umět určit neznámou r.

Body S a O jsou středy kružnic h a l, které se dotýkají v bodě L. Tyto tři body leží na jedné přímce, vzdálenost SO je proto rovna.

|SO| = |SL| + |LO| = r + 6

Obdobně, vzdálenost SB je rovna

|SB| = |BK| − |KS| = 12 − r

neboť S a O jsou středy kružnic h a k a K je jejich dotykovým bodem. Vzdálenost OE je rovna:

|OE| = |OB| − |BE| = 6 − r

Odtud a z Pythagorovy věty v trojúhelnících SEO a SEB dostáváme:
|SE|² = |SO|² − |OE|² = |SB|² − |BE|²

(6 + r)² − (6 − r)² = (12 − r)² − r²

12r + 12r = 144 − 24r,
48r = 144,
r = 3.
Poloměr hledané kružnice je 3 cm

3 roky  5 Likes
avatar









K vyřešení tohoto příkladu jsou potřebné tyto znalosti z matematiky:

Pythagorova věta je základ výpočtů kalkulačky pravouhlého trojuholníka.

Další podobné příklady:

  1. Z9–I–3
    ball_floating_water Julince se zakutálel míček do bazénu a plaval ve vodě. Jeho nejvyšší bod byl 2 cm nad hladinou. Průměr kružnice, kterou vyznačila hladina vody na povrchu míčku, byl 8 cm. Určete průměr Julinčina míčku.
  2. Šestiúhelník nepravidelný
    6uholnik_nepravidelny Na obrázku je čtverec ABCD, čtverec EF GD a obdélník HIJD. Body J a G leží na straně CD, přičemž platí |DJ| < |DG|, a body H a E leží na straně DA, přičemž platí |DH| < |DE|. Dále víme, že |DJ| = |GC|. Šestiúhelník ABCGF E má obvod 96 cm, šestiúhelník EF
  3. Z9–I–1
    ctverec_mo Ve všech devíti polích obrazce mají být vyplněna přirozená čísla tak, aby platilo: • každé z čísel 2, 4, 6 a 8 je použito alespoň jednou, • čtyři z polí vnitřního čtverce obsahují součiny čísel ze sousedících polí vnějšího čtverce, • v kruhu je součet čí
  4. Čtvercova sít
    sit Čtvercova síť se skladá ze čtverců se stranou delky 1cm. Narysujte do ní alespoň tři různe obrazce takové, aby každý měl obsah 6cm2 a obvod 12cm a aby jejich strany splývaly s přímkami síťe.
  5. Pan Cuketa
    cuketa Pan Cuketa měl obdelníkovou zahradu. jejíž obvod byl 28 metrů. Obsah celé zahrady vyplnily právě čtyři čtvercové záhony, jejichž rozměry v metrech byly vyjádřeny celými čísly. Určete, jaké rozměry mohla mít zahrada. najděte všechny možnosti a zapište n j
  6. Pětiúhelník
    5gon_1 Uvnitř pravidelného pětiúhelníku ABCDE je bod P takový, že trojúhelník ABP je rovnostranný. Jak velký je úhel BCP? Udělej si náčrtek
  7. Užasné číslo
    numbers4 Užasným číslem nazveme takové sudé číslo, jehož rozklad na součin prvočísel má právě tři ne nutně různé činitele a součet všech jeho dělitelů je roven dvojnásobku tohoto čísla. Najděte všechna užasná čísla.
  8. Bazén
    praded Objem vody v městském bazénu s obdelníkovým dnem je 6998,4 hektolitrů. Propagační leták uvádí, že kdybychom chtěli všechnu vodu z bazénu přelít do pravidelného čtyřbokého hranolu s podstavnou hranou rovnající se průměrné hloubce bazénu, musel by být hrano
  9. Pastevci
    ovce-miestami-baran Na louce se pasou koně, krávy a ovce, spolu jich je méně než 200. Kdyby bylo krav 45-krát více, koní 60-krát více a ovcí 35krát více než jejich je nyní, jejich počty by se rovnaly. Kolik se spolu na louce pase koní, krav a ovcí?
  10. Osmistěn
    8sten Na každé stěně pravidelného osmistěnu je napsáno jedno z čísel 1, 2, 3, 4, 5, 6, 7 a 8, přičemž na různých stěnách jsou různá čísla. U každé stěny Jarda určil součet čísla na ní napsaného s čísly tří sousedních stěn. Takto dostal osm součtů, které také se
  11. MO - trojúhelníky
    metal Na stranách AB a AC trojúhelníku ABC lěží po řadě body E a F, na úsečce EF leží bod D. Přmky EF a BC jsou rovnoběžné a součastně platí FD : DE = AE : EB = 2:1. Trojúhelník ABC má obsah 27 hektarů a úsečkami EF, AD a DB je rozdělen na čtyři části . Určete
  12. Myška Hryzka
    myska_hryzka Myška Hryzka našla 27 stejných krychliček sýra. Nejdříve si z nich poskládala velkou krychli a chvíli počkala, než se sýrové krychličky k sobě přilepily. Potom z každé stěny velké krychle vyhryzla střední krychličku. Poté snědla i krychličku, která byla v
  13. Ovce a beran
    sheep Když pán Beran zakladal chov, měl bílych ovci o 8 více nez černých. V současnosti má bílych ovci čtyrikrát více než na začátku a černých třikrát více než na začátku. Bílych ovcí je teď o 42 více než černých. Kolik nyní pan Beran chová bílych a černých ovc
  14. Z9-I-4
    numbers_30 Katka si myslela pětimístné přirozené číslo. Do sešitu napsala na první řádek součet myšleného čísla a poloviny myšleného čísla. Na druhý řádek napsala součet myšleného čísla a pětiny myšleného čísla. Na třetí řádek napsala součet myšleného čísla a devíti
  15. Komora
    socks V komoře, kde se rozbilo světlo a vše z ní musíme brát naslepo, máme ponožky čtyř různých barev. Pokud si chceme být jisti, že vytáhneme alespoň dvě bílé ponožky, musíme je z komory přinést 28. Abychom měli takovou jistotu pro šedé ponožky, musíme je přin
  16. Štedrý den
    stedryd V nepřestupném roce bylo 53 nedělí. Na jaký den týdne připadl Štedrý den?
  17. Mnohonožka Z6–I–3
    mnohonozky.JPG Mnohonožka Mirka sestává z hlavy a několika článků, na každém článku má jeden pár nohou. Když se ochladilo, rozhodla se, že se obleče. proto si na třetím článku od konce a potom na každém dalším třetím článku oblékla ponožku na levou nožku. Podobně si na