Úhlopříčka + trojúhelník - příklady a úlohy - strana 14 z 20
Počet nalezených příkladů: 397
- Vypočítejte 7638
Do válce o výšce 10 centimetrů je vložen kvádr se čtvercovou podstavou tak, že jeho podstavava je vepsána do podstavy válce. Hrana podstavy kvádru měří 4 cm. Obě tělesa mají stejnou výšku. Vypočítejte rozdíl objemů válce a kvádru
- Zanedbatelným 81670
Do přepravního kontejneru o rozměrech a=10 m, b=4m, c=3m byla umístěna dřevěná bedna o rozměrech d=3m, e=4m a f=3m. Jaká je maximální délka rovné neohebné tyče se zanedbatelným průměrem, kterou lze v této situaci ještě do kontejneru umístit?
- Jehlan 6
Vypočítej povrch a objem pravidelného čtyřbokého komolého jehlanu : a1= 18 cm , a2=6cm /úhel alfa/α=60° (Úhel α je úhel mezi boční stěnou a rovinou podstavy.) S=? , V=?
- Překlopíme 8187
Bednu tvaru hranolu s výškou 1 m a čtvercovou podstavou o hraně 0,6 m překlopíme účinkem síly 350 N, která působí vodorovně oproti horní hraně. Jakou hmotnost má bedna?
- Vypočítejte kvádr
Je dán kvádr ABCDEFGH. Víme, že |AB| = 1 cm, |BC| = 2 cm, |AE| = 3 cm. Vypočítejte ve stupních velikost úhlu, který svírají přímky BG a FH .
- Vypočítej 39
Vypočítej objem (V) a povrch (S) pravidelného čtyřbokého hranolu, jehož výška je 28,6 cm a odchylka tělesové úhlopříčky od roviny podlahy je 50°.
- Úhlopříčka 15
Vypočítejte objem krychle, jejíž tělesová úhlopříčka má velikost 75 dm. Načrtněte si obrázek a tělesovou úhlopříčku barevně zvýrazněte.
- Borovice
Z kmene borovice dlouhé 6m a průměru 35cm se má vyřezat trám s příčným řezem ve tvaru čtverce tak, aby čtverec měl co největší obsah. Vypočítej délku strany čtverce. Vypočítej objem trámu v metrech krychlových.
- Podstava
Podstavou kvádru je obdélník se stranou 7,5 cm a úhlopříčkou 12,5 cm. Objem kvádru je V = 0,9 dm³. Vypočtěte povrch kvádru.
- Kvádr
Kvádr má objem 40 cm³. Kvádr má celkovou plochu 100 cm čtverečních. Jedna hrana kostky má délku 2 cm. Najděte délku úhlopříčky kvádru. Dejte svou odpověď správně na 3 desetinná místa.
- Špejle
Sklenice má tvar válce s vnitřním průměrem 12 cm, výška sklenice ode dna je 16 cm. Seříznutou špejli lze šikmo vložit do sklenice tak, že nepřečnívá přes okraj. Jaká je největší možná délka seříznuté špejle? (Tloušťka špejle se při výpočtu zanedbává.)
- Hranol 4b-pravidelný
Vypočítejte objem a povrch pravidelného čtyřbokého hranolu jehož výška je 28,6cm a tělesová úhlopříčka svírá s rovinou podstavy úhel 50 stupnů.
- Kvádr - úhlopříčka
Vypočítej objem kvádru, jehož tělesova úhlopříčka u se rovná 6,1cm a obdélníková postava má rozměry 3,2cm a 2,4cm
- Hranol 27
Hranol s kosočtverečnou podstavou má jednu úhlopříčku podstavy 20 cm a hranu podstavy 26cm. Hrana podstavy je k výšce hranolu v poměru 2:3. Vypočítej objem hranolu.
- Kolmý jehlan
Vypočtěte objem kolmého jehlanu, jehož boční strana délky 5cm svíra se čtvercovou podstavou úhel s velikostí 60 stupňů.
- Roviny bočních stěn
Vypočítej objem a povrch kvádru jehož strana c má délku 30 cm a tělesová úhlopříčka svírá s rovinami bočních stěn úhly o velikostech 24 st. 20’, 45 st. 30’
- Kosoštvorec podstava
Ypočítejte objem a povrch hranolu, jehož podstava je kosočtverec s úhlopříčkami u1 = 13 cm, u2 = 16 cm. Výška hranolu se rovná dvojnásobku podstavové hrany.
- Čtverečních 74024
Úhlopříčka osového řezu rotačního válce je 6 cm a jeho povrch je 30cm čtverečních. Vypočítej poloměr podstavy.
- Šestihran
Pravidelný šestihran (6 úhelník) se stěnou 6 cm je otočen o 60 ° podél přímky procházející její nejdelší úhlopříčce. Jaký je objem takto vytvořeného tělesa?
- Délky
Délky hran kvádru jsou v poměru 2:3:6. Jeho tělesová úhlopříčka má délku 14 cm. Vypočtěte objem a povrch kvádru.
Máš úkol, který jsi tady nenašel vyřešen? Pošli nám úkol a my Ti ji zkusíme vypočítat. Řešení příkladů z matematiky.