Osum kvádrů

Dana měla za úlohu uložit osum kvádrů podle těchto pravidel:

1. Mezi dvěma červenými kvádry musí být jeden jiné barvy.
2. Mezi dvěma modrými musí být dva jiné barvy.
3. Mezi dvěma zelenými musí být tři jiné barvy.
4. Mezi dvěma žlutými kvádry musí být čtyři jiné barvy.

Jak Dana uložila kvádry, pokud první kvádr nemůže být žlutý? Kolik je řešení?

Výsledek

n =  16

Řešení:

1 BGYBRGRY
2 BGYBRGRY
3 BGYBRGRY
4 BGYBRGRY
5 BGYBRGRY
6 BGYBRGRY
7 BGYBRGRY
8 BGYBRGRY
9 BGYBRGRY
10 BGYBRGRY
11 BGYBRGRY
12 BGYBRGRY
13 BGYBRGRY
14 BGYBRGRY
15 BGYBRGRY
16 BGYBRGRY







Napište nám komentář ke příkladu a řešení (například pokud je stále něco nejasné ...):

1 komentář:
#1
Peter5
zaciatocne pismena jsou anglicke (R=red, B= blue, Y=yellow, G = green)
1 BGYBRGRY
2 BGYBRGRY
3 BGYBRGRY
4 BGYBRGRY
5 BGYBRGRY
6 BGYBRGRY
7 BGYBRGRY
8 BGYBRGRY
9 BGYBRGRY
10 BGYBRGRY
11 BGYBRGRY
12 BGYBRGRY
13 BGYBRGRY
14 BGYBRGRY
15 BGYBRGRY
16 BGYBRGRY

avatar









Chceš si dát spočítat kombinační číslo? Viz také naši kalkulačku variací. Viz také naši kalkulačku permutaci.

Další podobné příklady:

  1. Bazén
    praded Objem vody v městském bazénu s obdelníkovým dnem je 6998,4 hektolitrů. propagační leták uvádí, že kdybychom chtěli všechnu vodu z bazénu přelít do pravidelného čtyřbokého hranolu s podstavnou hranou rovnající se průměrné hloubce bazénu, musel by být hrano
  2. Z9–I–3
    ball_floating_water Julince se zakutálel míček do bazénu a plaval ve vodě. Jeho nejvyšší bod byl 2 cm nad hladinou. Průměr kružnice, kterou vyznačila hladina vody na povrchu míčku, byl 8 cm. Určete průměr Julinčina míčku.
  3. MO - trojúhelníky
    metal Na stranách AB a AC trojúhelníku ABC lěží po řadě body E a F, na úsečce EF leží bod D. Přmky EF a BC jsou rovnoběžné a součastně platí FD : DE = AE : EB = 2:1. Trojúhelník ABC má obsah 27 hektarů a úsečkami EF, AD a DB je rozdělen na čtyři části . Určete
  4. Z9–I–1
    ctverec_mo Ve všech devíti polích obrazce mají být vyplněna přirozená čísla tak, aby platilo: • každé z čísel 2, 4, 6 a 8 je použito alespoň jednou, • čtyři z polí vnitřního čtverce obsahují součiny čísel ze sousedících polí vnějšího čtverce, • v kruhu je součet čí
  5. Čtvercova sít
    sit Čtvercova síť se skladá ze čtverců se stranou delky 1cm. Narysujte do ní alespoň tři různe obrazce takové, aby každý měl obsah 6cm2 a obvod 12cm a aby jejich strany splývaly s přímkami síťe.
  6. Šestiúhelník nepravidelný
    6uholnik_nepravidelny Na obrázku je čtverec ABCD, čtverec EF GD a obdélník HIJD. Body J a G leží na straně CD, přičemž platí |DJ| < |DG|, a body H a E leží na straně DA, přičemž platí |DH| < |DE|. Dále víme, že |DJ| = |GC|. Šestiúhelník ABCGF E má obvod 96 cm, šestiúhelník EF
  7. Osmistěn
    8sten Na každé stěně pravidelného osmistěnu je napsáno jedno z čísel 1, 2, 3, 4, 5, 6, 7 a 8, přičemž na různých stěnách jsou různá čísla. U každé stěny Jarda určil součet čísla na ní napsaného s čísly tří sousedních stěn. Takto dostal osm součtů, které také se
  8. Pětiúhelník
    5gon_1 Uvnitř pravidelného pětiúhelníku ABCDE je bod P takový, že trojúhelník ABP je rovnostranný. Jak velký je úhel BCP? Udělej si náčrtek
  9. Mnohonožka Z6–I–3
    mnohonozky.JPG Mnohonožka Mirka sestává z hlavy a několika článků, na každém článku má jeden pár nohou. Když se ochladilo, rozhodla se, že se obleče. proto si na třetím článku od konce a potom na každém dalším třetím článku oblékla ponožku na levou nožku. Podobně si na
  10. Komora
    socks V komoře, kde se rozbilo světlo a vše z ní musíme brát naslepo, máme ponožky čtyř různých barev. Pokud si chceme být jisti, že vytáhneme alespoň dvě bílé ponožky, musíme je z komory přinést 28. Abychom měli takovou jistotu pro šedé ponožky, musíme je přin
  11. Myška Hryzka
    myska_hryzka Myška Hryzka našla 27 stejných krychliček sýra. Nejdříve si z nich poskládala velkou krychli a chvíli počkala, než se sýrové krychličky k sobě přilepily. Potom z každé stěny velké krychle vyhryzla střední krychličku. Poté snědla i krychličku, která byla v
  12. Pan Cuketa
    cuketa Pan Cuketa měl obdelníkovou zahradu. jejíž obvod byl 28 metrů. Obsah celé zahrady vyplnily právě čtyři čtvercové záhony, jejichž rozměry v metrech byly vyjádřeny celými čísly. Určete, jaké rozměry mohla mít zahrada. najděte všechny možnosti a zapište n j
  13. Ovce a beran
    sheep Když pán Beran zakladal chov, měl bílych ovci o 8 více nez černých. V současnosti má bílych ovci čtyrikrát více než na začátku a černých třikrát více než na začátku. Bílych ovcí je teď o 42 více než černých. Kolik nyní pan Beran chová bílych a černých ovc
  14. Pastevci
    ovce-miestami-baran Na louce se pasou koně, krávy a ovce, spolu jich je méně než 200. Kdyby bylo krav 45-krát více, koní 60-krát více a ovcí 35krát více než jejich je nyní, jejich počty by se rovnaly. Kolik se spolu na louce pase koní, krav a ovcí?
  15. Z9-I-4
    numbers_30 Katka si myslela pětimístné přirozené číslo. Do sešitu napsala na první řádek součet myšleného čísla a poloviny myšleného čísla. Na druhý řádek napsala součet myšleného čísla a pětiny myšleného čísla. Na třetí řádek napsala součet myšleného čísla a devíti
  16. Štedrý den
    stedryd V nepřestupném roce bylo 53 nedělí. Na jaký den týdne připadl Štedrý den?
  17. Užasné číslo
    numbers4 Užasným číslem nazveme takové sudé číslo, jehož rozklad na součin prvočísel má právě tři ne nutně různé činitele a součet všech jeho dělitelů je roven dvojnásobku tohoto čísla. Najděte všechna užasná čísla.