Clock

How many times a day hands on a clock overlap?

Result

n =  22

Solution:

α=β \alpha = \beta

36060m+360k=36012m60\dfrac{ 360^\circ }{ 60} m + 360^\circ k = \dfrac{ 360^\circ }{ 12}\dfrac{ m}{ 60}

6m+360k=0.5m6^\circ m + 360^\circ k = 0.5^\circ m

6m -0 = m/2; m = 2/11*0 = 0 min ==> 0:00:00
6m -360 = m/2; m = 2/11*360 = 65.45 min ==> 1:05:27
6m -720 = m/2; m = 2/11*720 = 130.91 min ==> 2:10:54
6m -1080 = m/2; m = 2/11*1080 = 196.36 min ==> 3:16:21
6m -1440 = m/2; m = 2/11*1440 = 261.82 min ==> 4:21:49
6m -1800 = m/2; m = 2/11*1800 = 327.27 min ==> 5:27:16
6m -2160 = m/2; m = 2/11*2160 = 392.73 min ==> 6:32:43
6m -2520 = m/2; m = 2/11*2520 = 458.18 min ==> 7:38:10
6m -2880 = m/2; m = 2/11*2880 = 523.64 min ==> 8:43:38
6m -3240 = m/2; m = 2/11*3240 = 589.09 min ==> 9:49:05
6m -3600 = m/2; m = 2/11*3600 = 654.55 min ==> 10:54:32
6m -3960 = m/2; m = 2/11*3960 = 720 min ==> 12:00:00
6m -4320 = m/2; m = 2/11*4320 = 785.45 min ==> 13:05:27
6m -4680 = m/2; m = 2/11*4680 = 850.91 min ==> 14:10:54
6m -5040 = m/2; m = 2/11*5040 = 916.36 min ==> 15:16:21
6m -5400 = m/2; m = 2/11*5400 = 981.82 min ==> 16:21:49
6m -5760 = m/2; m = 2/11*5760 = 1047.27 min ==> 17:27:16
6m -6120 = m/2; m = 2/11*6120 = 1112.73 min ==> 18:32:43
6m -6480 = m/2; m = 2/11*6480 = 1178.18 min ==> 19:38:10
6m -6840 = m/2; m = 2/11*6840 = 1243.64 min ==> 20:43:38
6m -7200 = m/2; m = 2/11*7200 = 1309.09 min ==> 21:49:05
6m -7560 = m/2; m = 2/11*7560 = 1374.55 min ==> 22:54:32
6m -7920 = m/2; m = 2/11*7920 = 1440 min ==> 24:00:00 !!! h>23

6m -8280 = m/2; m = 2/11*8280 = 1505.45 min ==> 25:05:27 !!! h>23



n=22








Leave us a comment of this math problem and its solution (i.e. if it is still somewhat unclear...):

Showing 1 comment:
#
Bo Shag
I dislike these questions, but they are very good for the brain.

avatar









Do you solve Diofant problems and looking for a calculator of Diofant integer equations? Do you have a linear equation or system of equations and looking for its solution? Or do you have quadratic equation? Do you want to convert length units? Try conversion angle units angle degrees, minutes, seconds, radians, grads.

Next similar math problems:

  1. Circular pool
    arc_open The base of the pool is a circle with a radius r = 10 m, excluding a circular segment that determines the chord length 10 meters. The pool depth is h = 2m. How many hectoliters of water can fit into the pool?
  2. Garden
    garden_1 Area of a square garden is 6/4 of triangle garden with sides 56 m, 35 m, and 35 m. How many meters of fencing need to fence a square garden?
  3. Rectangle
    rectangle_inscribed_circle The rectangle is 21 cm long and 38 cm wide. Determine the radius of the circle circumscribing rectangle.
  4. Quadrilateral 2
    quadrilateral Show that the quadrilateral with vertices P1(0,1), P2(4,2) P3(3,6) P4(-5,4) has two right triangles.
  5. Trapezoid MO
    right_trapezium The rectangular trapezoid ABCD with right angle at point B, |AC| = 12, |CD| = 8, diagonals are perpendicular to each other. Calculate the perimeter and area of ​​the trapezoid.
  6. Rectangle
    diagonal In rectangle with sides, 6 and 3 mark the diagonal. What is the probability that a randomly selected point within the rectangle is closer to the diagonal than to any side of the rectangle?
  7. Trapezoid MO-5-Z8
    lichobeznik_mo_z8 ABCD is a trapezoid that lime segment CE divided into a triangle and parallelogram as shown. Point F is the midpoint of CE, DF line passes through the center of the segment BE and the area of the triangle CDE is 3 cm2. Determine the area of the trapezoid A
  8. 30-gon
    30gon At a regular 30-gon the radius of the inscribed circle is 15cm. Find the "a" side size, circle radius "R", circumference, and content area.
  9. Quarter circle
    quarter_circle_1 What is the radius of a circle inscribed in the quarter circle with a radius of 100 cm?
  10. Ratio of sides
    described_circle2 Calculate the area of a circle that has the same circumference as the circumference of the rectangle inscribed with a circle with a radius of r 9 cm so that its sides are in ratio 2 to 7.
  11. Annular area
    medzikrucie2 The square with side a = 1 is inscribed and circumscribed by circles. Find the annular area.
  12. Area of a rectangle
    rectangle Calculate the area of a rectangle with a diagonal of u = 12.5cm and a width of b = 3.5cm. Use the Pythagorean theorem.
  13. Triangle SAS
    triangle_iron Calculate the area and perimeter of the triangle, if the two sides are 51 cm and 110 cm long and angle them clamped is 130 °.
  14. Rhombus
    rhombus Calculate the perimeter and area of ​​a rhombus whose diagonals are 38 cm and 55 cm long.
  15. Square diagonal
    square_d Calculate length of the square diagonal if the perimeter is 476 cm.
  16. Rhombus
    rhomus_circle It is given a rhombus of side length a = 29 cm. Touch points of inscribed circle divided his sides into sections a1 = 14 cm and a2 = 15 cm. Calculate the radius r of the circle and the length of the diagonals of the rhombus.
  17. Recursion squares
    squares_reccurent In the square ABCD is inscribed a square so that its vertices lie at the centers of the sides of the square ABCD.The procedure of inscribing square is repeated this way. Side length of square ABCD is a = 22 cm. Calculate: a) the sum of perimeters of all