Čokolády

Mam krabicu čokolády-biela, mliečna a tmavá. Pomer bielej k mliečnej s tmavou je 3: 4. Pomer bielej s mliečnou k tmavej je 17: 4. Vypočítaj aký je pomer medzi bielou, mliečnu, tmavou.

Výsledok

p = (Správna odpoveď je: 9/8:4) Nesprávne

Riešenie:

b/(m+t)=3/4 (b+m)/t=17/4  b:m:t=?  4b=3m+3t 4b+4m=17t  9m=8b 9t=4b  b:m=9:8 b:t=9:4  p=9:8:4b/(m+t)=3/4 \ \\ (b+m)/t=17/4 \ \\ \ \\ b:m:t=? \ \\ \ \\ 4b=3m+3t \ \\ 4b+4m=17t \ \\ \ \\ 9m=8b \ \\ 9t=4b \ \\ \ \\ b:m=9:8 \ \\ b:t=9:4 \ \\ \ \\ p=9:8:4



Naše príklady z veľkej miery nám poslali alebo vytvorili samotní žiaci a študenti. Preto budeme veľmi radi, ak prípadne chyby, ktoré ste našli, pravopisné chyby alebo preštylizovanie príkladu nám prosím pošlite. Ďakujeme!





Napíšte nám komentár ku príkladu (úlohe) a jeho riešeniu (napríklad ak je stále niečo nejasné alebo máte iné riešenie, alebo príklad neviete vypočítať či riešenie je nesprávne...):

Zobrazujem 0 komentárov:
1st comment
Buďte prvý, kto napíše komentár!
avatar




Tipy na súvisiace online kalkulačky
Vyskúšajte našu kalkulačka na prepočet pomeru.
Riešite Diofantovské problémy a hľadáte kalkulačku diofantovských celočíselných rovníc?

Ďaľšie podobné príklady a úlohy:

  1. Kytice 2
    tulipany Simona natrhala v záhrade 63 tulipánov a uviazala z nich dvojfarebné kytice pre svoje priateľky. Tulipány boli iba červené a biele. Do každej kytice dala rovnako veľa tulipánov, pričom tri z nich boli vždy červené. Koľko mohla Simona odtrhnúť' bielych tul
  2. Na začiatku
    skola Na začiatku sú 2 chlapci a x dievčat. Potom do triedy prídu ďalšie 3 deti. Na konci je o 3-krát menej chlapcov ako dievčat. Koľko je dievčat a chlapcov v triede
  3. Kvíz 4
    test_1 V súťaži odpovedá 10 súťažiacich na päť otázok, v každom kole na jednu otázku. Kto odpovie správne, získa v danom kole toľko bodov, koľko súťažiacich odpovedalo nesprávne. Jedna zo súťažiacich po súťaži povedala : Celkovo sme získali 116 bodov, z toho j
  4. Na jednej 2
    penize Na jednej malej škole na Morave pracuje spolu 10 učiteľov. Mesačný plat každého z nich je 21 500 CZK alebo 21 800 CZK alebo 22 500 CZK podľa ich vzdelania a veku. Priemerný mesačný plat učiteľa tejto školy je 21 850 CZK. Koľko učiteľov tejto školy zarobí
  5. Obdĺžniky
    rectangles_1 Koľko rôznych obdĺžnikov možno zostaviť zo 60 štvorcových dlaždíc s obsahom 1 m štvorcový. Určte rozmery týchto obdĺžnikov.
  6. Písomka z matiky
    test Päť najlepších matematikov z triedy sa podujalo pomôcť pani učiteľke s výpočtom priemernej známky z písomky. Nadiktovali jej tieto výsledky: Mišo: „Mne vyšlo 3,30. “ Dáša: „To je čudné, lebo mne to vyšlo presne 3,45. “ Jana: „Asi neviete rátať, lebo podľ
  7. V rezorte
    hviezdicky_mo V rezorte Sunny Beach je niekol'ko hotelov. Sú medzi nimi jedno-, dvoj-, troj- a štvor- hviezdičkové hotely. Janka pri prechádzke spočítala, že súčet všetkých hviezdičiek v rezorte je 69. Viac ako polovica hviezdičiek patrí jednohviezdičkovým hotelom. Poče
  8. Jablká a hrušky
    banan Jablká stoja 50 centov kus, hrušky 60 centov kus, banány lacnejšie ako hrušky. Babicka kúpila 5ks ovocia, bol tam len jeden banán a zaplatila 2 eurá 75 centov. Koľko bolo jabĺk a koľko hrušiek?
  9. MO C-I-1 2019
    numbers Nájdite všetky štvorciferné čísla abcd s ciferným súčtom 12 také, že ab-cd=1
  10. MO Z9-I-6 2019
    triangles Kristína zvolila isté nepárne prirodzené číslo deliteľné tromi. Jakub s Dávidom potom skúmali trojuholníky, ktoré majú obvod v milimetroch rovný Kristínou zvolenému číslu a ktorých strany majú dĺžky v milimetroch vyjadrené navzájom rôznymi celými číslami.
  11. V Kocúrkove - Z8-I-6 2019 MO
    mince_1 V Kocúrkove používajú mince iba s dvoma hodnotami, ktoré sú vyjadrené v kocúrkovských korunách kladnými celými číslami. Pomocou dostatočného množstva takých mincí je možné zaplatiť akúkoľvek celočíselnú sumu väčšiu ako 53 kocúrkovských korún, a to presne
  12. Z9–I–3 MO 2019
    reciprocal Pre ktoré celé čísla x je podiel (x+11)/(x+7) celým číslom. Riešení je údajne viac.
  13. Pozorovali
    cars Pozorovali sme cestnú premávku. Videli sme len bicykle a autá. Na ceste bolo spolu 40 kolies. Uved aspoň 3 možnosti koľko mohlo byt bicyklov a koľko áut?
  14. V hoteli 3
    hotel_8 V hoteli je 27 postelí v niekoľkých izbách. Sú tu jednolôžkové, dvojlôžkové a trojlôžkové izby. Koľko môže byť v hoteli jednolôžkových, dvojlôžkových a trojlôžkových izieb? Uveď aspoň tri možnosti.
  15. Samopočet
    nisa_Samopočet Samopočet funguje presne ako kalkulačka. Hostinský chcel na samopočte sčítať niekoľko trojciferných prirodzených čísel. Na prvý pokus dostal výsledok 2224. Pre kontrolu sčítal tieto čísla znova a vyšlo mu 2198. Preto sčítal tieto čísla ešte raz a teraz do
  16. Ceruzky
    fixy_2 600 ceruziek máme rozdeliť na tri kopy. V najväčšej kope je o 10 ceruziek viac ako v najmenšej. Koľkými spôsobmi sa to dá urobiť?
  17. Kvádre povrch
    kvader Koľko existuje kvádrov s celočíselnými rozmermi hrán, ak povrch je 48 m2?