Úvaha + matematická olympiáda - príklady

  1. Z9-I-4
    numbers_30 Katka si myslela päťciferné prirodzené číslo. Do zošita napísala na prvý riadok súčet mysleného čísla a polovice mysleného čísla. Na druhý riadok napísala súčet mysleného čísla a pätiny mysleného čísla. Na tretí riadok napísala súčet mysleného čísla a devä
  2. Komora
    socks V komore, kde sa rozbilo svetlo a všetko z nej musíme brať naslepo, máme ponožky štyroch rôznych farieb. Ak si chceme byť istí, že vytiahneme aspoň dve biele ponožky, musíme ich z komory priniesť 28. Aby sme mali takú istotu pre sivé ponožky, musíme ich pr
  3. Pastevci
    ovce-miestami-baran Na lúke sa pasú kone, kravy a ovce, spolu ich je menej ako 200. Keby bolo kráv 45-krát viac, koní 60-krát viac a oviec 35-krát viac ako ich je teraz, ich počty by sa rovnali. Koľko sa spolu na lúke pasie koní, kráv a oviec?
  4. Z9–I–1
    ctverec_mo Vo všetkých deviatich poliach obrazca majú byť vyplnené prirodzené čísla tak, aby platilo: • každé z čísel 2, 4, 6 a 8 je použité aspoň raz, • štyri z polí vnútorného štvorca obsahujú súčiny čísel zo susediacich polí vonkajšieho štvorca, • v kruhu je súče
  5. Pán Cuketa
    cuketa Pán Cuketa mal obdĺžnikovú záhradu, ktorej obvod bol 28 metrov. Obsah celej záhrady vyplnili práve štyri štvorcové záhony, ktorých rozmery v metroch boli vyjadrené celými číslami. Určite aké rozmery mohla mať záhrada. Nájdite všetky možnosti a zapíšte n ak
  6. Osemsten súčet
    8sten Na každej stene pravidelného osemstenu je napísané jedno z čísel 1, 2, 3, 4, 5, 6, 7 a 8, pričom na rôznych stenách sú rôzne čísla. Pri každej steny Janko určil súčet čísla na nej napísaného s číslami troch susedných stien. Takto dostal osem súčtov, ktoré.
  7. Štedrý deň
    stedryd V nepriestupnom roku bolo 53 nedieľ. Na aký deň týždňa pripadol Štedrý deň?
  8. Myška Hryzka
    myska_hryzka Myška Hryzka našla 27 rovnakých kociek syra. Najskôr si z nich poskladala veľkú kocku a chvíľu počkala, než sa syrové kocôčky k sebe prilepili. Potom z každej steny veľkej kocky vyhryzie strednú kocôčku. Potom zjedla aj kocôčky, ktorá bola v stredu veľkej.
  9. Stonožka
    mnohonozky.JPG Stonožka Mirka pozostáva z hlavy a niekoľkých článkov, na každom článku má jeden pár nôh. Keď sa ochladilo, rozhodla sa, že sa oblečie. preto si na treťom článku od konca a potom na každom ďalšom treťom článku obliekla ponožku na ľavú nôžku. Podobne si na.
  10. Pán Baran
    sheep Keď pán Baran zakladal chov, mal bielych ovcí o 8 viac nez čiernych. V súčasnosti má bielych ovcí štyrikrát viac ako na začiatku a čiernych trikrát viac ako na začiatku. Bielych oviec je teraz o 42 viac než čiernych. Koľko teraz pán Baran chová bielych a č
  11. Betka
    numbers_2 Betka si myslela prirodzené číslo s navzájom rôznymi ciframi a napísala ho na tabuľu. Podeň zapísala cifry pôvodného čísla odzadu a tak získala nové číslo. Sčítaním týchto dvoch čísel dostala číslo, ktoré malo rovnaký počet cifier ako myslené číslo a sklad
  12. Lichobežník MO-5-Z8
    lichobeznik_mo_z8 Lichobežník ABCD je úsečkou CE rozdelený na trojuholník a rovnobežník, viď obrázok. Bod F je stredom úsečky CE, priamka DF prechádza stredom úsečky BE a obsah trojuholníka CDE je 3 cm2. Určte obsah lichobežníka ABCD.
  13. Šťastný deň
    calendar_1 Číslo dňa je poradové číslo daného dňa v príslušnom mesiaci (teda napr. číslo dňa 5. augusta 2016 je 5). Ciferný súčet dňa je súčet hodnôt všetkých cifier v dátume tohto dňa (teda napr. ciferný súčet dňa 5. augusta 2016 je 5+8+2+0+1+6 = 22). Šťastný deň j
  14. Klávesy
    klavesy Miško mal na poličke malé klávesy, ktoré vidíte na obrázku. Na bielych klávesoch boli vyznačené ich tóny. Klávesy našla malá Klára. Keď ich brala z poličky, vypadli jej z ruky a všetky biele klávesy sa z nich vysypali. Aby sa brat nehneval, začala je Klára
  15. Vláčik
    train2 Čísla 1,2,3,4,5,6,7,8 a 9 cestovala vlakom. Vlak mal tri vagóny a v každom sa viezla práve tri čísla. Číslo 1 sa viezlo v prvom vagóne a v poslednom vagóne boli všetky čísla nepárne. Sprievodcovia cestou spočítal súčet čísel v prvom, druhom i posledným vag
  16. Domček Z9–I–5
    Mysky Myšky si postavili podzemný domček pozostávajúci z komôrok a tunelkov: • každý tunel vedie z komôrky do komôrky (tzn. žiadny nie je slepý), • z každej komôrky vedú práve tri tunely do troch rôznych komôrok, • z každej komôrky sa dá tunelom dostať do ktore
  17. Z9–I–2
    map_mo Z bodu A do bodu C vedie náučný chodník prechádzajúci bodom B a inakadiaľ tiež červená turistická značka, pozri obrázok. Okrem toho sa dá použiť aj nezakreslená skratka dlhá 1500 metrov začínajúca v A a ústiaca na náučnom chodníku. Vojtech zistil, že • vý
  18. Osem kvádrov
    cuboids Dana mala za úlohu uložiť osem kvádrov podľa týchto pravidiel: 1. Medzi dvoma červenými kvádre musí byť jeden inej farby. 2. Medzi dvoma modrými musia byť dva iné farby. 3. Medzi dvoma zelenými musia byť tri inej farby. 4. Medzi dvoma žltými kvádre musia.
  19. Bicykle
    cyclist_11 Si majiteľ dopravného ihriska. Kúp bicykle dvoch farieb ľubovoľného počtu, ale musíš minúť presne 120000Kč. Modrý bicykel stojí 3600Kč a červený bicykel stojí 3200Kč.
  20. Zmenáreň
    exchange_rates V tabuľke je kurzový lístok zmenárne, avšak niektoré hodnoty sú v ňom nahradené otáznikmi. Zmenáreň vymieňa peniaze v uvedených kurzoch a neúčtuje si iné poplatky. nákup prodej1 EUR 26,20 CZK 28,00 CZK1 GBP b=? CZK c=? CZK 1. Koľko eur (a =?) dostane zák

Máš zaujímavý príklad, ktorý nevieš vypočítať? Vlož ho a my Ti ho skúsime vypočítať.



Na túto emailovú adresu Vám odpovieme riešenie; vyriešené príklady pribúdajú aj tu. Ak ju uvediete, uveďte ju bezchybne a skontrolujte si či nemáte plný mailbox.