Zorný úhel
Pozorovatel vidí přímou ohradu dlouhou 60 m v zorném úhlu 30°. Od jednoho konce ohrady je vzdálen 102 m.
Jak daleko je pozorovatel od druhého konce ohrady?
Správný výsledek:
Jak daleko je pozorovatel od druhého konce ohrady?
Správný výsledek:

Zobrazuji 0 komentářů:
Tipy na související online kalkulačky
Hledáte pomoc s výpočtem kořenů kvadratické rovnice?
Kosinovú větu přímo používá kalkulačka SUS trojúhelníku.
Vyzkoušejte také naši trigonometrickou trojúhelníkovou kalkulačku.
Kosinovú větu přímo používá kalkulačka SUS trojúhelníku.
Vyzkoušejte také naši trigonometrickou trojúhelníkovou kalkulačku.
K vyřešení této úlohy jsou potřebné tyto znalosti z matematiky:
Doporučujeme k tomuto príkladu si prohlédnout toto výukové video: video1
Další podobné příklady a úkoly:
- Pozorovatel
Pozorovatel vidí přímou ohradu dlouhou 100 m v zorném úhlu 30°. Od jedného konce ohrady je vzdálen 170 m. Jak daleko je od druhého konce ohrady?
- Zorný úhel
Určete velikost zorného úhlu, pod nímž vidí pozorovatel tyč 16 m dlouhou, je-li od jednoho jejího konce vzdálen 18 m a druhého 27 m.
- SUS a zorný úhel
Rybník vidíme pod zorným úhlem 65° 37'. Jeho kraje jsou vzdáleny 155 m a 177 m od pozorovatele. Jaká je šířka rybníka?
- Vnitřní úhly
Vnitřní úhly trojúhelníku mají velikosti 30°, 45°, 105°, jeho nejdelší strana měří 10cm. Vypočítejte délku nejkratší strany, výsledek uveďte v cm s přesností na dvě desetinná čísla.
- Strany 8
Strany rovnoběžníku jsou 8 a 6 (cm), odchylka úhlopříček je 60°. Jaký je obsah?
- 30-60-90
Nejdelší strana trojúhelníku s úhly 30°-60°-90° měří 5. Jaká je délka nejkratší strany?
- Vypočítej z ťežnice
Vypočítej obvod, obsah a velikosti zbývajících úhlů trojúhelníku ABC, jestliže je dáno: a = 8,4; β = 105°35'; ťežnice ta = 12,5.
- V terénu - věta SSU
V terénu byla měřena vzdálenost bodů P a Q rovná 356 m. Úsečka PQ je vidět od pozorovatele pod zorným úhlem 107°22'. Vzdálenost pozorovatele od místa P je 271 m. Urči zorný úhel, pod kterým je vidět místo P a pozorovatele.
- Řeka
Z pozorovatelny 19 m vysoké a vzdálené 49 m od břehu řeky se jeví šířka řeky v zorném úhlu φ=9°30'. Vypočítejte šířku řeky.
- Funkce sinus, kosinus
Vypočítej velikosti zbývajících stran a úhlů pravoúhlého trojúhelníku ABC, jestliže je dáno: b=10cm; c=20cm; úhel alfa= 60° a úhel beta= 30° (použij Pytagorovu větu a funkce sinus, kosinus, tangens, kotangens)
- Navigace lodě
Loď pluje 84 km na kurzu 17° a pak cestuje na kurzu 107° 135 km. Najděte vzdálenost konce cesty z výchozího bodu a zaokrouhlete je na nejbližší kilometr.
- Most z balonu
Z balonu, který je 92 m nad mostem je vidět jeden konec mostu v hloubkovém úhlu 37° a druhý konec 30°30´. Vypočítejte délku mostu.
- Vodní kanál
Průřez vodního kanálu je lichoběžník. Šířka snu je 19,7 m, šířka vodní hladiny je 28,5 m, boční stěny mají sklon 67°30' a 61°15'. Vypočtěte, jaké množství vody proteče kanálem za 5 minut, pokud rychlost vodního proudu je 0,3 m/s.
- Jehlan
Urči povrch pravidelného čtyřbokého jehlanu, když je dán jeho objem V = 120 a úhel boční stěny s rovinou podstavy je α = 42° 30'.
- Stožár
Stožár má 13 metrů dlouhý stín na svahu stoupajícím od sloupu sloupku ve směru úhlu stínu při úhlu 15°. Určete výšku stožáru, pokud je slunce nad obzorem (horizontem) v úhlu 33°. Použijte sinusovou větu.
- Na vrcholu
Na vrcholu hory stojí hrad, který má věž vysokou 30m. Křižovatku cest v údolí vidíme z vrcholu věže a od její paty v hloubkových úhlech 32° 50 'a 30° 10'. Jak vysoko je vrchol hory nad křižovatkou
- Dětské hřiště
Dětské hřiště má tvar lichoběžníku, jehož rovnoběžné strany mají délku 36 m a 21 m, zbývající dvě strany délku 14 m a 16 m. Určete velikost vnitřních úhlů lichoběžníku.