Krychle a jehlan

V krychli s délkou hrany 12dm máme vepsaný jehlan s vrcholem ve středu horní stěny kostky. Vypočítejte objem a povrch tohoto jehlanu.

Výsledek

V =  576 dm3
S =  465.994 dm2

Řešení:

a=12 h=12 V=a2 h/3=122 12/3=576=576 dm3a = 12 \ \\ h = 12 \ \\ V = a^2 \cdot \ h/3 = 12^2 \cdot \ 12/3 = 576 = 576 \ dm^3
h2=h2+(a/2)2=122+(12/2)2=6 513.4164 S2=a h2/2=12 13.4164/2=36 580.4984 S=a2+4 S2=122+4 80.4984465.9938=465.994 dm2h_{ 2 } = \sqrt{ h^2+(a/2)^2 } = \sqrt{ 12^2+(12/2)^2 } = 6 \ \sqrt{ 5 } \doteq 13.4164 \ \\ S_{ 2 } = a \cdot \ h_{ 2 }/2 = 12 \cdot \ 13.4164/2 = 36 \ \sqrt{ 5 } \doteq 80.4984 \ \\ S = a^2+4 \cdot \ S_{ 2 } = 12^2+4 \cdot \ 80.4984 \doteq 465.9938 = 465.994 \ dm^2



Naše příklady z velké míry nám poslali nebo vytvořili samotní žáci a studenti. Proto budeme velmi rádi, pokud případně chyby které jste našli, pravopisné chyby nebo přeformulování příkladu nám prosím pošlete. Děkujeme!





Napište nám komentář ke příkladu (úlohe) a jeho řešení (například pokud je stále něco nejasné nebo máte jiné řešení, nebo příklad nevíte vypočítat, nebo-li řešení je nesprávné...):

Zobrazuji 0 komentářů:
1st comment
Buďte první, kdo napíše komentář!
avatar




Tip: proměnit jednotky objemu vám pomůže náš převodník jednotek objemu. Pythagorova věta je základ výpočtů kalkulačky pravouhlého trojuholníka.

Další podobné příklady a úkoly:

  1. Krychle
    cube_in_sphere_1 Krychle je vepsána do koule o objemu 4728 cm3. Určete délku hrany krychle.
  2. Terezka
    cube Krychle má obsah podstavy 289 mm2. Vypočítej její délku hrany, objem a povrh plášte.
  3. Kvádr
    cuboid_1 Kvádr má povrch 1577 cm2, délky jeho hran jsou v poměru 4:1:2. Vypočítej objem kvádru.
  4. Komolý kužel
    kuzel_komoly Vypočtěte výšku rotačního komolého kužele, je-li dán jeho objem V=1111 cm3 a poloměry podstav r1=6.2 cm a r2=9.8 cm.
  5. Kužel
    cones Rotační kužel o výšce 15 cm a objemu 10598 cm3 je ve třetině výšky (měřeno zespoda) rozříznut rovinou rovnoběžnou s podstavou. Určete poloměr a obvod kruhovéh řezu.
  6. Plovoucí sud
    floating_barrel Na vodě plave sud tvaru válce, a to tak že z vody vyčnívá 8 dm do výšky a na hladině má šířku 23 dm. Délka sudu je 24 dm. Vypočítejte objem sudu.
  7. Hranol X
    Cuboid_simple Hranol s hranami o délkách x cm, 2x cm a 3x cm a má objem 10368 cm3. Jakou velikost má povrch tohoto hranolu?
  8. Železná koule
    sphere_1 Železná koule má hmotnost 100 kg, hustota ρ = 7600 kg/m3. Vypočítejte objem, povrch a průměr koule.
  9. Válec horizontálně
    cylinder_horiz Kolik nafty je ve vodorovné nádrži ve tvaru válce o délce 10m, když šířka hladiny je 1m a hladina je 0,2m pod horní stranou válce?
  10. Podstava
    cuboids_1 Podstavou kvádru je obdélník se stranou 7,5 cm a úhlopříčkou 12,5 cm. Objem kvádru je V = 0,9 dm3. Vypočtěte povrch kvádru.
  11. Kužel S2V
    popcorn Plášť kužele rozvinutý do roviny má tvar kruhové výseče se středovým úhlem 126° a obsahem 415 dm2. Vypočítejte objem tohoto kužele.
  12. Válec - v
    cylinder_2 Objem válce je 163 cm3. Poloměr podstavy 10 cm. Vypočtěte výšku válce.
  13. Koule A2V
    sphere3 Povrch koule je 760 m2. Jaký je její objem?
  14. Dutá koule
    sphere_2 Ocelová dutá koule plave na vodě ponořena do poloviny svého objemu. Určete vnější poloměr koule a tloušťku stěny, pokud víte, že hmotnost koule je 0,5 kg a měrná hmotnost oceli je 7850 kg/m3.
  15. Kulová úseč
    circular_segment_1 Kulová úseč výšky h=1 má objem V=187. Určete poloměr koule, jejíž částí je daná táto úseč.
  16. Rovnostranný válec
    3d Rovnostranný válec (v = 2r) má objem V = 168 cm3. Vypočítejte povrch tohto valce.
  17. Vinař
    wine Do jaké výšky může vinař naplnit sud rozmačkanými červenými hrozny, jestliže tyto kvašeniny zaujimají objem o 20 procentech? Sud je tvaru válce o průměru podstavy 1 m a objemu 9,42 hl. Vycházej z úvahy, která řiká, že kvašením je zaplněna celá nádoba (čis