Algebra - slovní úlohy - strana 32

  1. Kvádr 38
    cuboid_10 Kvádr má objem 250 cm3, povrch 250 cm2 a jednu stranu 5cm. Jak vypočítám zbývající strany?
  2. Obdélník Anton
    anton_rec Rozdíl délky a šířky obdélníku je 8. Délka je 3-krát větší než šířka. Vypočítejte rozměry obdélníku.
  3. Hod mincí
    1_kcs Hodíme mincí tj. v každém hodu padne lev či panna se stejnou pravděpodobností 1/2. Určete, kolik nejméně musíme provést hodů, aby s pravděpodobností 0,9 padl lev alespoň jednou.
  4. Maminka
    hrusky2 Maminka rozdělila svým dětem 24 jablek a 15 hrušek. Každé dítě dostalo stejný počet jablek a stejný počet hrušek jako jeho sourozenci. Kolik jablek a kolik hrušek dostalo každé dítě?
  5. Čtení
    books_9 Adélka čte knížku každý den 7 stránek. Když přečte denně o stránku víc, bude ji mít přečtenou o 3 dny dříve. Jak dlouho bude Adélka číst knížku? Kolik má knížka stránek?
  6. Kola traktoru
    kola Menší kolo traktoru má obvod 3m, větší 4m. Na jaké dráze vykoná menší kolo o 6 otáček více než větší kolo?
  7. Akvárium 4
    akvarko_4 V akváriu tvaru kvádru s délkou 25 cm a šířkou 30 cm je 9 litrů vody. Vypočítejte obsah ploch, které jsou smáčené vodou.
  8. Bazén
    basen V bazénu tvaru kvádru je 299 m3 vody. Určete rozměry dna, je-li hloubka vody 282 cm a jeden rozměr je o 4.7 m větší než druhy.
  9. Střední příčka
    stredne_pricky Střední příčka rovnoramenného trojúhelníku má délku 3 cm. Určete délky jeho stran, jestliže obvod je 16 cm.
  10. Pravoúhlý trojúhelník
    vertex_triangle_right LMN je pravoúhlý trojúhelník s vrcholy L (1,3), M (3,5) a N (6, n). Pokud je úhel LMN 90°, najděte n.
  11. Autobusy
    regiojet Autobusy Ikarus a Karosa vyjeli současně v 10:00 z konečné stanice. Ikarus se do této stanice vrátil po 30 minutách. A Karosa po 45 minutách. V kolik hodin se oba autobusy opět vrátili do této stanice?
  12. Príklad pro Ladu
    water_2 Hmotnost nádoby s vodou je 2,48kg. Odlijeme-li 75% vody, má nádoba s vodou hmotnost 0,98kg. Určete hmotnost prázdné nádody. Kolik vody bylo původně v nádobě?
  13. Trojúhelník
    squares4 Trojúhelník ABC má délky stran m-1; m-2; m-3. Jaký musí být m, aby byl a) pravoúhlý b) ostroúhlý?
  14. Město 2
    kingkong Ve městě dnes žije 167000 obyvatel. Jaký počet můžeme očekávat za 11 let, předpokládáme-li každoroční přírůstek 1%?
  15. Internát
    harvard V internátu je ve 58 pokojích ubytováno 208 žáků.Některé pokoje jsou třílůžkové některé jsou čtyřlůžkové. Kolik je třílůžkových a kolik čtyřlůžkových pokojů, jestliže jsou všechny plně obsazeny?
  16. Kroužek v škole
    venn 27 žáků navštěvuje nějaký kroužek, taneční kroužek navštěvuje 14 žáků, sportovní 21 žáků a dramatický 16 žáků. Taneční a sportovní navštěvuje 9 žáků, taneční a dramatický 6 žáků, sportovní a dramatický 11 žáků. Kolik žáků navštěvuje všechny 3 kroužky?
  17. Švestky
    plumbs V míse bylo celkem 136 švestek. Igor si z mísy vzal 3 švestky a Víra si vzala 4/7 ze zbytku. Kolik švestek zůstalo nakonec v míse?
  18. Dělitelnost 2
    divisors Kolik dělitelů má přirozené číslo 13?
  19. Vodní nádrž
    nadrz_1 Vodní nádrž se naplní jedním přívodem o 4 hodiny, druhým pak o 9 hodin později než oběma najednou. Za jakou dobu se naplní každým zvlášť?
  20. Pravděpodobnosti
    Venn_diagram Pokud P (A) = 0.62 P (B) = 0.78 a P (A ∩ B) = 0.26, vypočítejte následující pravděpodobnosti (zjednotenia. průniků, opačných jevů a jejich kombinací):

Máš zajímavú úlohu, který nevíš vypočítat? Vlož ji a my Ti ji zkusíme vypočítat.



Na tuto e mailovou adresu Vám odpovíme řešení; řešené příklady přibývají i zde. Pokud ji uvedete, uveďte ji bezchybně a zkontrolujte si zda nemáte plný mailbox.