V hoteli 2

V hoteli Holiday majú na každom poschodí rovnaký počet izieb. Izby sú číslované prirodzenými číslami postupne od prvého poschodia, žiadne číslo nie je vynechané a každá izba má iné číslo. Do hotela pricestovali traja turisti. Prvý sa ubytoval v izbe číslo 50 na štvrtom poschodí. Druhý v izbe číslo 100 na siedmom poschodí, tretí v izbe číslo 126 na deviatom poschodí. Koľko izieb je na každom poschodí?

Výsledok

n =  15

Riešenie:

Textové riešenie n =







Napíšte nám komentár ku príkladu a riešeniu (napríklad ak je stále niečo nejasné...):

Zobrazujem 0 komentárov:
1st comment
Buďte prvý, kto napíše komentár!
avatar




Riešite Diofantovské problémy a hľadáte kalkulačku diofantovských celočíselných rovníc?

Ďaľšie podobné príklady:

  1. Pasenie
    luka Na lúke sa pasú kone, ovce a kačice. Oviec je viac ako kačíc. Ovce a kačice majú spolu 100 hláv a nôh. Kačíc a oviec je trikrát viac ako koní. Koľko je koní?
  2. Z9 – I – 6 2018 MO
    numbers2_49 Prirodzené číslo N nazveme bombastické, ak neobsahuje vo svojom zápise žiadnu nulu a ak žiadne menšie prirodzené číslo nemá rovnaký súčin cifier ako číslo N. Peter sa najskôr zaujímal o bombastické prvočísla a tvrdil, že ich nie je veľa. Vypíšte všetky dvo
  3. Súčet dvoch prvočísel
    prime_1 Matematik Christian Goldbach zistil, že každé párne číslo väčšie ako 2 môže byť vyjadrené ako súčet dvoch prvočíselných čísel. Napíšte alebo vyjadrite 2018 ako súčet dvoch prvočísel.
  4. Obchodná akadémia
    skola_18 Na OA si žiaci štvrtých ročníkov môzu vybrať z troch nepovinných predmetov: a) matematicke metody, b) spoločenský styk, c) management Každy žiak študuje niektorý z týchto predmetov. Matematické metody študuje 28 žiakov, spoločensky styk 27 žiakov a mana
  5. MO Z9-I-3 2018
    cinema2_14 V našom meste sú tri kiná, ktorým sa hovorí podľa svetových strán. O ich otváracích hodinách je známe, že: • každý deň je otvorené aspoň jedno kino, • ak je otvorené južné kino, tak nie je otvorené severné kino, • nikdy nie je otvorené súčasne severné a
  6. Šesťciferné prvočísla
    numberline_1 Nájdite všetky šesťciferné prvočísla, ktoré obsahujú každú z číslic 1,2,4,5,7 a 8 práve raz. Koľko ich je?
  7. Ceruzky
    fixy_2 600 ceruziek máme rozdeliť na tri kopy. V najväčšej kope je o 10 ceruziek viac ako v najmenšej. Koľkými spôsobmi sa to dá urobiť?
  8. Sto známok
    stamp_4 Je sto listových známok a stojí sto korún. Sú tam známky dvacaťhalierové, korunové, dvojkorunové a 5 korunové. Koľko je ktorých? Koľko má úloha riešení?
  9. Koza 4
    bielakoza Slnko vychádza na východe od prístrešku a zapadá na západe. Koze by sa zišlo trochu tieňa, kde a aký druh stromu treba zasadiť , aby ho neobjedla?
  10. Dôkaz sporom
    thales_1 Chceme dokázať sporom tvrdenie: Ak je prirodzené číslo n deliteľné šiestimi, potom je n deliteľné tromi. Z akého predpokladu budeme vychádzať?
  11. Neznáme číslo
    unknown Neznáme číslo je deliteľné práve tromi rôznymi prvočíslami. Keď tieto prvočísla porovnáme vzostupne, platí nasledujúce: • Rozdiel druhého a prvého prvočísla je polovicou rozdielu tretieho a druhého prvočísla. • Súčin rozdielu druhého a prvého prvočísla s r
  12. PIN kód
    pin_2 PIN na Mišovej kreditke je štvorciferné číslo. Mišo o ňom kamarátom prezradil: • Je to prvočíslo – teda číslo väčšie ako 1, ktoré je deliteľné iba číslom jedna a sebou samým. • Prvá číslica zľava je väčšia ako druhá. • Druhá číslica zľava je väčšia ako.
  13. Delitele
    divisors Súčet všetkých deliteľov istého nepárneho čísla je 2112. Určte, aký je súčet všetkých deliteĺov dvojnásobku tohto neznámeho čísla.
  14. Číslice
    num_2 Dagmar písala na počítači čísla(bez medzier) 45678910111213141516.. . Ktorú číslicu napísala na tristom mieste?
  15. Chlebíčky
    chart_1 Chlebíčky sa ušli 29 ľuďom. Koláč ochutnalo 18 ľudí. Nápojom sa ponúklo 32 ľudí. Nápoj s koláčom malo 7 ľudí. Chlebíček a nápoj malo 18 ľudí. Chlebíček a koláč malo 8 ľudí. 5 ľudí sa ponúklo všetkým. 2 ľudia sa neponúkli ničím. Koľko bolo na oslave ľudí?
  16. Autíčka
    numbers2_13 Pavel má zbierku autíčok. Chcel je novo usporiadať do skupín. Ale pri delení po troch, po štyroch, po šiestich i po ôsmich mu vždy jedno zostalo. Až keď tvoril skupiny po siedmich, rozdelil všetky. Koľko autíčok v zbierke?
  17. Kombinácie
    circles Koľko je rôznych kombinácií 2-ciferného čísla delitelného číslom 4 vzniknutého z číslic 3, 5 a 7?