Zrkadielko

Ako ďaleko od svojich nôh musel Pavel umiestniť zrkadlo, aby v ňom uvidel vrchol veže vysokej 12 m? Výška Pavlových očí očí nad horizontálnou rovinou je 160 cm, Pavol je od veže vzdialený 20 m.

Výsledok

x =  2.353 m

Riešenie:

Textové riešenie x =







Napíšte nám komentár ku príkladu a riešeniu (napríklad ak je stále niečo nejasné...):

Zobrazujem 0 komentárov:
1st comment
Buďte prvý, kto napíše komentár!
avatar




Pozrite aj našu kalkulačku pravouhlého trojuholníka. Chcete premeniť jednotku dĺžky? Pozrite aj našu trigonometrickú trojuholníkovu kalkulačku. Pozrite aj našu trigonometrickú trojuholníkovu kalkulačku.

Ďaľšie podobné príklady:

  1. Peter a Pavol
    pravitko_1 Ako ďaleko od Petra stojí dvojmetrový Pavol? Peter sa na Pavla pozerá cez pravítko, ktoré drží v natiahnuté v ruke 60 cm od oka a na pravítku zmeral Pavlovu výšku na 15 mm.
  2. Pod stromom
    stromcek_3 Pod stromom stojí Miro a pozoruje svoj tieň a tieň stromu. Miro je vysoký 180 cm a jeho tieň má dĺžku 1,5m. Tieň stromu je trikrát tak dlhý ako Mirov tieň. Aký vysoký je strom v metroch?
  3. Uhly
    angles_1 Vonkajší uhol trojuholníka ABC pri vrchole A je 114°12'. Vonkajší uhol pri vrchole B je 139°18'. Akú veľkosť má vnútorný uhol pri vrchole C?
  4. Tupý uhol
    10979326_654459541349455_1236723697_n Úsečka OH je výškou trojuholníka DOM, úsečka MN leží na osi uhla pri vrchole M. Tupý uhol medzi úsečkami OH a MN je štyri-krát väčší ako uhol DMN. Akú veľkosť má uhol DMO? (prikladám aj obrázok)
  5. Výška 2
    1unilateral_triangle Vypočítajte výšku rovnostranného trojuholníka so stranou 38.
  6. Horská trať
    semmering Rozdiel výšok medzi miestami A, B železničnej trati je 38,5 m, ich horizontálna vzdialenosť je 3,5 km, Určte stúpanie promile po trati.
  7. Mierka plánu
    geodet V akej mierke je nakreslený plán budovy, ak jedna strana budovy je dlhá 45m je na plániku vyjadrená úsečkou dlhou 12mm.
  8. Stúpanie
    aircraft_ascend Pri vodorovnej vzdialenosti 2.4 km cesta stúpne o 3.6 m. Máme vypočítať stúpanie v ‰ (promile).
  9. 30-60-90
    30-60-90 Najdlhšia strana trojuholníka s uhlami 30°-60°-90° meria 5. Aká je dĺžka najkratšej strany?
  10. Lanovka
    lanovka Lanovka stúpa pod uhlom 45° a spája hornú a dolnú stanicu s výškovým rozdielom 744 m. Aké dlhé je "nekonečné" ťažné lano lanovky?
  11. Zostrojte
    troj Zostrojte trojuholník ABC, ak poznáte dĺžky jeho strán c = 5 cm, a = 4 cm a uhol ABC má ve¾kosť 60°. Odmerajte dĺžku strany b v milimetroch. Dĺžka strany b je: a, 75 mm < b < 81 mm b, 53 mm < b < 59 mm c, 43 mm < b < 49 mm d, 13 mm < b < 19 mm
  12. Odvesny a stred
    RightTriangleMidpoint Jedna z odvesien pravouhlého trojuholníka má dĺžku 12 cm. V akej vzdialenosti je stred prepony od druhej odvesny?
  13. Navýšenie km
    percent_18 V roku 2016 sa najazdilo 52893,9 km a v roku 2017 sa najazdilo 64035,4 km, o koľko sa navýšili km v percentách?
  14. Aky dlhý
    rebrik33_2 Aky dlhý je rebrík opretý o stenu vo vzdialenosti 1,4m od steny, ak je opretý do výšky 3m?
  15. Dvojitý rebrík
    rr_rebrik Dvojitý rebrík má ramená dlhé 3 metre. Akú výšku dosiahne horný koniec rebríka, ak sú spodné konce vzdialené 1,8 metra?
  16. Koeficient podobnosti 2
    trig12 Trojuholníky ABC a A"B"C" sú podobné koeficientom podobnosti 2 . Veľkosti uhlov trojuholníka ABC sú α= 35° a β= 48°. urči veľkosti všetkých uhlov trojuholníka A"B"C".
  17. Stredná priečka
    trianles Je pravda že stredná priečka rozpoľuje trojuholník?