Kváder s podstavou

Kváder s podstavou a rozmermi 12 cm a 5 cm a výškou 4 cm. Stolár tento kváder rozrezal na dva zhodné trojboké hranoly s podstavami v tvare pravouhlého trojuholníka. Stolár vytvorené hranoly natrel farbou. Vypočítajte povrch jedného z týchto dvoch trojbokých hranolov.

Výsledok

S =  180 cm2

Riešenie:

Textové riešenie S =
Textové riešenie S = : č. 1







Napíšte nám komentár ku príkladu a riešeniu (napríklad ak je stále niečo nejasné...):

Zobrazujem 1 komentár:
#1
Dr Math
ale uloha ma viacero reseni - vid S2,S3... podla toho ako stolar rozreze kvader

avatar









Pozrite aj našu kalkulačku pravouhlého trojuholníka. Pozrite aj našu trigonometrickú trojuholníkovu kalkulačku.

Ďaľšie podobné príklady:

  1. Lichobežník MO
    right_trapezium Je daný pravouhlý lichobežník ABCD s pravým uhlom pri bode B, |AC| = 12, |CD| = 8, uhlopriečky sú na seba kolmé. Vypočítajte obvod a obsah takéhoto lichobežníka.
  2. Stožiar 5
    geodet_1 Vrchol stožiaru vidíme vo výškovom uhle 45°. Ak sa priblížime k stožiaru o 10 m, vidíme vrchol pod výškovým uhlom 60°. Aká je výška stožiaru?
  3. Adam oprel
    rebrik33_4 Adam oprel rebrík o dom tak, že horný koniec dosahoval k oknu vo výške 3,6 m a dolný koniec stál na rovnej zemi a bol od steny odstavený o 1,5m. Aká je dĺžka rebríka?
  4. Pravouhlý Δ
    ruler Pravouhlý trojuholník ma dĺžku odvesny 30 cm a dĺžku prepony 50 cm. Vypočítajte výšku trojuholníka.
  5. Z5 – I – 2 MO 2018
    triangle_7 Tereza dostala štyri zhodné pravouhlé trojuholníky so stranami dĺžok 3 cm, 4 cm a 5 cm. Z týchto trojuholníkov (nie nutne zo všetkých štyroch) skúšala skladať nové útvary. Postupne sa jej podarilo zložiť štvoruholníky s obvodom 14 cm, 18 cm, 22 cm a 26 cm,
  6. Z6-I-6 MO 2018
    12uholnik_1 V dvanásťuholníku ABCDEFGHIJKL sú každé dve susedné strany navzájom kolmé a všetky strany s výnimkou strán AL a GF sú navzájom zhodné. Strany AL a GF sú oproti ostatným stranám dvojnásobne dlhé. Úsečky BG a EL sa pretínajú v bode M a rozdeľujú dvanásťuholn
  7. Z7–I–2 MO 2018
    12uholnik V dvanásťuholníku ABCDEFGHIJKL sú každé dve susedné strany navzájom kolmé a všetky strany s výnimkou strán AL a GF sú navzájom zhodné. Strany AL a GF sú oproti ostatným stranám dvojnásobne dlhé. Úsečky BG a EL sa pretínajú v bode M. Štvoruholník ABMJ má ob
  8. Z9 – I – 5 MO 2018
    kruhy_mo Peter a Ivan vytvárali dekorácie z navzájom zhodných bielych kruhov. Peter použil štyri kruhy, ktoré položil tak, že sa každý dotýkal dvoch iných kruhov. Medzi ne potom vložil iný kruh, ktorý sa dotýkal všetkých štyroch bielych kruhov, a ten vyfarbil červe
  9. Ravouhlý
    right-trapezium-figure Ravouhlý lichobežník ABCD so základňami AB a CD je rozdelený uhlopriečkou AC na dva rovnoramené pravouhlé trojuholníky. Dĺžka uhlopriečky AC je rovná 62cm. Vypočítajte v cm štvorcových obsah lichobežníka a vypočítajte, o koľko cm sa líšia obvody trojuholní
  10. Obdĺžnik
    rectnagles_3 Obdĺžnik, ktorého jedna strana je dlhá 5 cm, rozdelíme uhlopriečkou s dĺžkou 13 cm na dva trojuholníky. Vypočítajte obsah jedného z týchto trojuholníkov v cm2.
  11. PT - polomer vpísanej
    rt_incircle Máme dané strany v pravouhlom trojuholníku a=30cm, b=12,5cm. Pravý uhol je pri vrchole C. Vypočítaj polomer vpísanej kružnice.
  12. C-I-2 2018 MO
    lines_13 Na strane AB trojuholníka ABC sú dané body D a E tak, že |AD| = |DE| = |EB|. Body A a B sú postupne stredmi úsečiek CF a CG. Priamka CD pretína priamku FB v bode I a priamka CE pretína priamku AG v bode J. Dokážte, že priesečník priamok AI a BJ leží na pri
  13. Z7-1-6 MO 2018
    iso_rt Daný je rovnoramenný pravouhlý trojuholník ABS so základňou AB. Na kružnici, ktorá má stred v bode S a prechádza bodmi A a B, leží bod C tak, že trojuholník ABC je rovnoramenný. Určte, koľko bodov C vyhovuje uvedeným podmienkam, a všetky také body zostro
  14. Z8 – I – 3 MO 2018
    kvietok2 Peter narysoval pravidelný šesťuholník, ktorého vrcholy ležali na kružnici dĺžky 16 cm. Potom pre každý vrchol tohto šesťuholníka narysoval kružnicu so stredom v tomto vrchole, ktorá prechádzala jeho dvoma susednými vrcholmi. Vznikol tak útvar ako na obr
  15. Vonkajšie uhly
    triangle_bac_5 ABC trojuholnik, alfa = 54stupňov 32minút, beta = 79 stupňov. Aké sú veľkosti vonkajšich uhlov?
  16. Polomer vpísanej
    inscircle_triangle Zostrojte trojuholník ABC: kružnica vpísaná má polomer r = 2 cm, uhol alfa = 50 stupňov, c = 8 cm. Preveďte náčrtok, opis konštrukcie a rozbor.
  17. Záhrada
    garden_1 Rozloha štvorcovej záhrady tvorí 4/5 rozlohy záhrady tvaru trojuholníka so stranami 24 m 15 m a 15 m. Koľko metrov pletiva potrebujem na oplotenie štvorcovej záhrady?