Najmenší spoločný násobok (NSN) + matematická olympiáda - príklady a úlohy

Počet nájdených príkladov: 17

  • Matik - KSM
    vahy2 V kuchárskej knihe od Mateja Matemakaka sa písalo: najväčší spoločný deliteľ gramáže múky a gramáže cukru je 15, najväčší spoločný deliteľ gramáže cukru a gramáže citrónovej kôry je 6, súčin gramáže cukru a gramáže citrónovej kôry je 1800, najmenší spoloč
  • MO C–I–1 2018
    numbers Neznáme číslo je deliteľné práve štyrmi číslami z množiny {6, 15, 20, 21, 70}. Určite, ktorými.
  • Pyramída Z8–I–6
    pyramida_mo Každá tehlička zobrazenej pyramídy obsahuje jedno číslo. Kedykoľvek to je možné, je číslo v každej tehličke najmenším spoločným násobkom čísel z dvoch tehličiek ležiacich priamo nad ňou. Ktoré číslo môže byť v najspodnejšej tehličke? Určite všetky možnost
  • MO Z8–I–3 - 2017 - Adelka
    numbers2 Adelka mala na papieri napísané dve čísla. Keď k nim pripísala ešte ich najväčší spoločný deliteľ a najmenší spoločný násobok, dostala štyri rôzne čísla menšie ako 100. S úžasom zistila, že keď vydelí najväčšie z týchto štyroch čísel najmenším, dostane na
  • Stonožka
    mnohonozky Stonožka Mirka pozostáva z hlavy a niekoľkých článkov, na každom článku má jeden pár nôh. Keď sa ochladilo, rozhodla sa, že sa oblečie. preto si na treťom článku od konca a potom na každom ďalšom treťom článku obliekla ponožku na ľavú nôžku. Podobne si na
  • Z7–I–5 MO 2018
    ruze V záhradníctve Rose si jedna predajňa objednala celkom 120 ruží vo farbe červenej a žltej, druhá predajňa celkom 105 ruží vo farbe červenej a bielej a tretia predajňa celkom 45 ruží vo farbe žltej a bielej. Záhradníctvo zákazku splnilo, a to tak, že ruží
  • MO Z8-I-2 2012
    numbers Číslo X je najmenšie také prirodzené číslo, ktorého polovica je deliteľná tromi, tretina deliteľná štyrmi, štvrtina deliteľná jedenástimi a jeho polovica dáva zvyšok 5 po delení siedmimi. Nájdite toto číslo.
  • MO C-I-3 2019
    numbers Určte všetky dvojice prirodzených čísel A a B, pre ktoré platí, že súčet dvojnásobku najmenšieho spoločného násobku a trojnásobku najväčšieho spoločného deliteľa prirodzených čísel A a B je rovný ich súčinu.
  • Čokoláda 6
    chocholate Medzinárodná banda pašerákov čokolády vedená slávnym Jackom Krivým Nosom, ktorý má 7 spolupracovníkov, si vytipovalal bratislavské letisko ako križovatku svojich obchodov. Lietadlo z Bratislavy do Štokholmu lieta každý tretí deň. Lietadlo z Bratislavy do
  • Snehulienka 2019 MO Z7
    snehulienka Snehulienka so siedmimi trpaslíkmi nazbierali šišky na táborák. Snehulienka povedala, že počet všetkých šišiek je číslo deliteľné dvoma. Prvý trpaslík prehlásil, že je to číslo deliteľné tromi, druhý trpaslík povedal, že je to číslo deliteľné štyrmi, tret
  • Z7–I–4 2018 MO Betka
    gears_mo Betka sa hrala s ozubenými kolesami, ktoré ukladala tak, ako je naznačené na obrázku. Keď potom zatočila jedným okolo, točili sa všetky ostatné. Nakoniec bola spokojná so súkolesím, pričom prvé koleso malo 32 a druhé 24 zubov. Keď sa tretie koleso otočilo
  • Pastevci
    ovce-miestami-baran Na lúke sa pasú kone, kravy a ovce, spolu ich je menej ako 200. Keby bolo kráv 45-krát viac, koní 60-krát viac a oviec 35-krát viac ako ich je teraz, ich počty by sa rovnali. Koľko sa spolu na lúke pasie koní, kráv a oviec?
  • MO Z7–I–3 2017
    zoo Zoologická záhrada ponúkala školským skupinám výhodné vstupné: každý piaty žiak dostáva vstupenku zdarma. Pán učiteľ 6.A spočítal, že ak kúpi vstupné deťom zo svojej triedy, ušetrí za štyri vstupenky a zaplatí 19,95 €. Pani učiteľka 6.B mu navrhla, nech k
  • Slávkine čísla
    olympics Slávka si napísala farebnými fixkami štyri rôzne prirodzené čísla: červené, modré, zelené a žlté. Keď červené číslo vydelí modrým, dostane ako neúplný podiel zelené číslo a žlté predstavuje zvyšok po tomto delení. Keď vydelí modré číslo zeleným, vyjde jej
  • Zvonkohra MO - Z5 - 1 - 66
    Zvonkohra Zvonkohra na nádvorí hrá o každej celej hodine krátku skladbu, a to počínajúc 8. a končiac 22. hodinou. Skladieb je celkom osemnásť, o celej hodine sa hrá vždy iba jedna a po odohraní všetkých osemnástich sa začína v rovnakom poradí znova. Oľga a Ľuboš bo
  • MO Z9–I–3 - 2017
    robots Roboti Róbert a Hubert skladajú a rozoberajú mlynčeky na kávu. Pritom každý z nich mlynček zloží štyrikrát rýchlejšie, ako ho sám rozoberie. Keď ráno prišli do dielne, niekoľko mlynčekov už tam bolo zložených. O 7:00 začal Hubert skladať a Róbert rozobera
  • Cukríky MO Z6-I-5 2017
    cukriky V plechovke boli červené a zelené cukríky. Cyril zjedol 2/5 všetkých červených cukríkov a Zuzka zjedla 3/5 všetkých zelených cukríkov. Teraz tvoria červené cukríky 3/8 všetkých cukríkov v plechovke. Koľko najmenej cukríkov mohlo byť pôvodne v plechovke?

Máš zaujímavý príklad alebo úlohu, ktorý nevieš vypočítať? Vlož úlohu a my Ti ju skúsime vypočítať.



Na túto emailovú adresu Vám odpovieme riešenie; vyriešené príklady pribúdajú aj tu. Ak ju uvediete, uveďte ju bezchybne a skontrolujte si či nemáte plný mailbox.

Prosím nevkladajte súťažné úlohy z aktuálnych súťaží typu Matematická olympiáda, korenšpondenčné semináre Mal, matik.strom.sk, Pytagoriády atď .



Chceš si vypočítať najmenší spoločný násobok dvoch alebo viacerých čísel? Najmenší spoločný násobok (NSN) - príklady. Matematická olympiáda - príklady.