Kvádr - úhlopříčka

Vypočítej objem kvádru, jehož tělesova úhlopříčka u se rovná 6.1cm a obdélníková postava má rozměry 3.2cm a 2.4cm

Výsledek

V =  35.37 cm3

Řešení:

u=6.1 cm a=3.2 cm b=2.4 cm  u=a2+b2+c2  c=u2a2b2=6.123.222.424.6054 cm  V=a b c=3.2 2.4 4.605435.3697=35.37 cm3u = 6.1 \ cm \ \\ a = 3.2 \ cm \ \\ b = 2.4 \ cm \ \\ \ \\ u = \sqrt{ a^2+b^2+c^2 } \ \\ \ \\ c = \sqrt{ u^2-a^2-b^2 } = \sqrt{ 6.1^2-3.2^2-2.4^2 } \doteq 4.6054 \ cm \ \\ \ \\ V = a \cdot \ b \cdot \ c = 3.2 \cdot \ 2.4 \cdot \ 4.6054 \doteq 35.3697 = 35.37 \ cm^3



Naše příklady z velké míry nám poslali nebo vytvořili samotní žáci a studenti. Proto budeme velmi rádi, pokud případně chyby které jste našli, pravopisné chyby nebo přeformulování příkladu nám prosím pošlete. Děkujeme!





Napište nám komentář ke příkladu (úlohe) a jeho řešení (například pokud je stále něco nejasné nebo máte jiné řešení, nebo příklad nevíte vypočítat, nebo-li řešení je nesprávné...):

Zobrazuji 1 komentář:
#
Hurvajs
výsledek je 35.36971450266456, pokud počítamé se zadáním, že strana je 2.4 a ne 2.3 jak je ve výpočtu

avatar









Tip: proměnit jednotky objemu vám pomůže náš převodník jednotek objemu. Pythagorova věta je základ výpočtů kalkulačky pravouhlého trojuholníka.

Další podobné příklady a úkoly:

  1. Kvádr
    cuboid Kvádr s hranou a=7 cm a tělesových úhlopříčkou u=33 cm má objem V=3136 cm3. Vypočítejte velikosti ostatních hran.
  2. Lichoběžník MO
    right_trapezium Je dán pravouhlý lichoběžník ABCD s pravým uhlem u bodu B, |AC| = 12, |CD| = 8, uhlopříčky jsou na sebe kolmé. Vypočítejte obvod a obsah takéhoto lichobežníka.
  3. Kosočtverec
    rhombus Vypočítejte obvod a obsah kosočtverce, jehož úhlopříčky jsou dlouhé 16 cm a 40 cm.
  4. Obdélník
    rectangle_inscribed_circle Obdélník je 29 cm dlouhý a 47 cm široký. Urči poloměr kružnice opsané obdélníku.
  5. Osový řez
    cone2 Osovým řezem kužele, jehož povrch je 114 mm2, je rovnostranný trojúhelník. Vypočítejte objem kužele.
  6. Krychle
    squares_2 Jedna krychle je kouli vepsána a druhá opsána. Vypočítejte rozdíl objemů v obou krychlích, pokud rozdíl jejich povrchů je 231 cm2.
  7. Kužel S2V
    popcorn Plášť kužele rozvinutý do roviny má tvar kruhové výseče se středovým úhlem 126° a obsahem 415 dm2. Vypočítejte objem tohoto kužele.
  8. Pravoúhlý Δ
    ruler Pravoúhlý trojúhelník ma délku odvěsny 12 cm a délku přepony 13 cm. Vypočítejte výšku trojúhelníku.
  9. Řeka
    kongo_river Vypočítejte o kolik promile průměrně klesá řeka Vltava, pokud na úseku dlouhém 873 km teče voda z výšky 1343 m nad mořem na výšku 198 m nad mořem.
  10. Trojúhelník SUS
    triangle_iron Vypočítejte plochu a obvod trojúhelníku, pokud jeho dvě strany jsou dlouhé 88 dm a 88 dm a úhel nimi sevřený je 170°.
  11. Čtverec
    square_1 Body A[-9,6] a B[-5,-3] jsou sousedními vrcholy čtverce ABCD. Vypočítejte obsah čtverce ABCD.
  12. Čtyřboký jehlan
    jehlanctyrboky Jaký je povrch pravidelného čtyřbokého jehlanu, když je podstavná hrana a=16 a výška v=19?
  13. Záhrada
    garden_1 Rozloha čtvercové zahrady tvoří 6/8 rozlohy zahrady tvaru trojúhelníku se stranami 136 m 85 m a 85 m. Kolik metrů pletiva potřebuji na oplocení čtvercové zahrady?
  14. Tětiva
    circleChord Jakou délku d má tětiva kružnice o průměru 69 mm, pokud je vzdálena od středu kružnice 17 mm?
  15. Goniometrické funkce
    trigonom Pro pravoúhlý trojúhelník plati: ? Určitě hodnoty s, c aby platilo: ? ?
  16. Úloha o pohybu
    peleton Z křižovatky dvou kolmých silnic vyjeli současně dva cyklisté (každý jinou silnicí) jeden jede průměrnou rychlostí 19 km/h, druhý průměrnou rychlostí 19 km/h. Určete jejich vzájemnou vzdálenost po 45 minutách jízdy.
  17. Zkratka
    direct_route Představte si, že jdete ke kamarádovi po rovné cestě. Ta cesta má délku 350 metrů. Potom zahnete doprava a půjdete dalších 1790 metrů a jste u kamaráda. Otázka zní, o kolik bude kratší cesta, když půjdete přímou cestou přes pole?