Derivační problém

Součet dvou čísel je 12. Najděte tato čísla, jestliže:
a) Součet jejich třetích mocnin je minimální.
b) Součin jednoho s třetí mocninou druhého je maximální.
c) Obě jsou kladná a součin jednoho s druhou mocninou druhého je maximální.

Správný výsledek:

a1 =  6
b1 =  6
a2 =  3
b2 =  9
a3 =  4
b3 =  8

Řešení:

a+b=12 y=min(a3+b3) y=min(a3+(12a)3)  f=3a23(12a)2 f=0   3 x23 (12x)2=0  72x=432  x=6  a1=6a+b=12 \ \\ y=min(a^3+b^3) \ \\ y=min(a^3+(12-a)^3) \ \\ \ \\ f'=3a^2 -3(12-a)^2 \ \\ f'=0 \ \\ \ \\ \ \\ 3 \cdot \ x^2 -3 \cdot \ (12-x)^2=0 \ \\ \ \\ 72x=432 \ \\ \ \\ x=6 \ \\ \ \\ a_{1}=6
b1=12a1=126=6b_{1}=12-a_{1}=12-6=6
f2=a b3 f2=a (12a)3 f2(a)=d/da(a(12a)3)=4(a3)(12a)2  f2(a)=0  m1=3 m2=12 m3=12  f21=m1 (12m1)3=3 (123)3=2187 f22=m2 (12m2)3=12 (1212)3=0   a2=m1=3f_{2}=a \cdot \ b^3 \ \\ f_{2}=a \cdot \ (12-a)^3 \ \\ f_{2}'(a)=d/da(a (12 - a)^3)=-4 (a - 3) (12 - a)^2 \ \\ \ \\ f_{2}'(a)=0 \ \\ \ \\ m_{1}=3 \ \\ m_{2}=12 \ \\ m_{3}=12 \ \\ \ \\ f_{21}=m_{1} \cdot \ (12-m_{1})^3=3 \cdot \ (12-3)^3=2187 \ \\ f_{22}=m_{2} \cdot \ (12-m_{2})^3=12 \cdot \ (12-12)^3=0 \ \\ \ \\ \ \\ a_{2}=m_{1}=3
b2=12a2=123=9b_{2}=12-a_{2}=12-3=9
f3=a b2 f3=a (12a)2 f3(a)=d/da(a(12a)2)=3(a216 a+48)  f3(a)=0  3(z216z+48)=0  3(z216 z+48)=0 3z248z+144=0  a=3;b=48;c=144 D=b24ac=48243144=576 D>0  z1,2=b±D2a=48±5766 z1,2=48±246 z1,2=8±4 z1=12 z2=4   Soucinovy tvar rovnice:  3(z12)(z4)=0  f31=z1 (12z1)2=12 (1212)2=0 f32=z2 (12z2)2=4 (124)2=256  a3=z2=4

Výpočet overte naším kalkulátorem kvadratických rovnic.

b3=12a3=124=8b_{3}=12-a_{3}=12-4=8



Budeme velmi rádi, pokud najdete chybu v příkladu, pravopisné chyby nebo nepřesnost a ji nám prosím pošlete . Děkujeme!






Zobrazuji 0 komentářů:
avatar




Tipy na související online kalkulačky
Hledáte pomoc s výpočtem kořenů kvadratické rovnice?

Další podobné příklady a úkoly:

  • Pagáče
    rohliky Jano s Mišom jedli pagáče. Jano snědl o 3 více než Mišo. Součin jejich počtů (čísel) je 180. Kolik pagáčů snědl každý z nich?
  • Na schodišti
    schody Na schodišti vysokém 3,6 metrů by se počet schodů zvětšil o 3, kdyby se výška jednoho schodu zmenšila o 4 cm. Jak jsou schody vysoké?
  • Kedlubny
    kalerab Cena jednoho kedlubny vzrostla o 0,40 €. Počet kedluben, které může zákazník koupit za 4 €, tak klesl o 5. Zjistěte v eurech novou cenu jednoho kedlubny.
  • Obsah a obvod obdělníka
    rectnagles Obsah obdělníka je 3000 cm2, jeden rozměr je o 10 cm větší než druhý. Určete obvod obdělníka.
  • V rovnoramenném trojúhelníku
    rr_triangle3 V rovnoramenném trojúhelníku ABC se základnou AB; A [-3,4]; B [1,6] leží vrchol C na přímce 5x - 6y - 16 = 0. Vypočítejte souřadnice vrcholu C.
  • Jedna 7
    lichobeznik Jedna ze základen lichoběžníku je o pětinu větší než jeho výška, druhá je větší o 1 cm. Urči rozměry lichoběžníku, pokud je jeho plocha 115 cm2
  • Pravoúhlý 30
    rt_triangle_1 Pravoúhlý trojúhelník s celočíselnou délkou dvou stran má odvěsnu dlouhou √11. Kolik měří jeho nejdelší strana?
  • Válec 24
    valec2_1 Válec má obsah 300 m čtverečních, přičemž výška válce je 12 m . vypočítejte objem tohoto válce.
  • Rozhledna
    tower Jak vysoká je rozhledna? Kdyby byl každý schod o 3 cm nižší, bylo by je na rozhlednu o 60 více. Kdyby byl zase o 3 cm vyšší, bylo by je o 40 méně, než jich je nyní.
  • Ve dvojciferném
    numbers_2 Ve dvojciferném čísle je počet desítek o tři větší než počet jednotek. Jestliže původní číslo násobíme číslem napsaným týmiž číslicemi, ale v obráceném pořadí, dostaneme součin 3 478. Určete původní číslo.
  • Kvadratická 6
    parabol33 Kvadratická funkce má předpis y=x²-2x-3. Načrtněte graf této funkce. Určete průsečíky s osami. Určete souřednice vrcholu.
  • Kvadratická 5
    parabola Kvadratická funkce má předpis y=-2x²-3x+8. Vypočítejte funkční hodnotu v bodě 5, -2 a ½.
  • Čtverec ABCD
    square_axes Je dán čtverec ABCD s délkou strany 100 mm. Vypočítej poloměr kružnice, která prochází vrcholy B, C a středem strany AD.
  • Prodlouží-li
    cube_in_sphere Prodlouží-li se délky hran krychle o 5 cm, zvětší se její objem o 485 cm3. Určete povrch původní i zvětšené krychle.
  • Zorný úhel
    zorny Pozorovatel vidí přímou ohradu dlouhou 60 m v zorném úhlu 30°. Od jednoho konce ohrady je vzdálen 102 m. Jak daleko je pozorovatel od druhého konce ohrady?
  • Oslavenec
    bonbons_1 Ve třídě rozdávají žáci vždy o svých narozeninách spolužákům bonbóny. Oslavenec dá vždy každému po jednom bonbónu, sobě nedává. Za rok se ve třídě rozdalo celkem 650 bonbónů. Kolik žáků je ve třídě? (Poznámka: Všichni žáci třídy měli narozeniny v den, kdy
  • V pravoúhlém 4
    rt_triangle V pravoúhlém trojúhelníku je délka přepony 65 m a rozdíl odvěsen 23 m. Vypočítejte obvod tohoto trojúhelníku.