MO Z8–I–3 - 2017 - Adélka

Adélka měla na papíře napsána dvě čísla. Když k nim připsala ještě jejich největší společný dělitel a nejmenší společný násobek, dostala čtyři různá čísla menší než 100. S úžasem zjistila, že když vydělí největší z těchto čtyř čísel nejmenším, dostane největší
společný dělitel všech čtyř čísel. Která čísla měla Adélka napsána na papíře?

Výsledek

a =  12
b =  18

Řešení:

Textové řešení a =
Textové řešení b =







Napište nám komentář ke příkladu a řešení (například pokud je stále něco nejasné ...):

8 komentářů:
#1
Žák
Nerozumím, jak dojdu k výsledku 12 a 18, když mám 4 neznámé.

5 měsíců  1 Like
#2
Dr Math
tie 4 cisla co se spominaji v priklade, jsou 6,12,18,36

5 měsíců  1 Like
#3
Žák
Stale mi  neni jasne jak dojdu k tem ctyrem neznammy

5 měsíců  2 Likes
#4
Žák
mám dáno a, b, NSD (a,b), NSN (a,b)
vím, že: a x b = NSD x NSN a že, pokud vydělím nejnižší číslo nejvyšším, dostanu společný NSD všech; každé číslo je jiné a menší než 100.
Můžete napsat rovnice, z kterých mi vyjdou daná čísla?

#5
Dr Math
rovnici asi tezko. ale uvahou bych na to sel asi takhle. Obe cisla budu ucite sucinom dvoch prvocisel a sucet mocnin prvocisel bude 3. napr nejnizsi mozne: a = 12 = 3^1 * 2^2, b = 18 = 2^1*3^2 zarucene pan aj NSN bude urcite pod 100.

Kdyby zvolime nejblizsis vyssi prvocisla tak a = 2^1*5^2 = 50   a b = 2^2 * 5 = 20, tak NSN uz 2^2 * 5^2 = 100  a to uz neplati ze je mensi nez 100...

5 měsíců  1 Like
#6
Noname
Takže je to takový "pokus omyl"?

#7
Žák
jak mám dojít k výsledku?? když mám čtyři neznámé?? tady v tom příkladě se počítá již s vyřešenými čísly!

#8
Žák
Prosím jak dospějete k číslům 12 a 18

avatar









Chceš si vypočítat nejmenší společný násobek dvou nebo více čísel? Chceš si vypočítat největší společný dělitel dvou nebo více čísel?

Další podobné příklady:

  1. Z7-I-4 MO 2017
    math_mo_2 Na stole leželo šest kartiček s ciframi 1, 2, 3, 4, 5, 6. Anežka z těchto kartiček složila šestimístné číslo, které bylo dělitelné šesti. Potom postupně odebírala kartičky zprava. Když odebrala první kartičku, zůstalo na stole pětimístné číslo dělitelné p
  2. Z9–I–4 MO 2017
    vlak2 Čísla 1, 2, 3, 4, 5, 6, 7, 8 a 9 se chystala na cestu vlakem se třemi vagóny. Chtěla se rozsadit tak, aby v každém vagóně seděla tři čísla a největší z každé trojice bylo rovno součtu zbylých dvou. Průvodčí tvrdil, že to není problém, a snažil se číslům p
  3. Z9-I-6 MO 2017
    olympics_1 Na přímce představující číselnou osu uvažte navzájem různé body odpovídající číslům a, 2a, 3a+1 ve všech možných pořadích. U každé možnosti rozhodněte, zda je takové uspořádání možné. Pokud ano, uveďte konkrétní příklad, pokud ne, zdůvodněte proč.
  4. Veselá chodidla
    klokan Na planetě veselá chodidla má každý muž levou nohu o 2 čísla větší než pravou ženy mají levou o 1 číslo větší. Boty se tam prodávají v párech o stejné velikosti. Kamarádi chtěli ušetřit peníze proto si boty koupili společně když si každý vybral pro sebe j
  5. Autíčka
    numbers2_13 Pavel ma sbirku auticek. chtel je nove usporadat do skupin. ale pri deleni po trech , po ctyrech, posesti, po osmi mu vzdy jedno zbylo. teprve kdyz tvoril skupiny po sedmi, rozdelil vsechny. kolik ma auticek ve sbirce?
  6. Kapesníky
    harmasan Do obchodu dostali tři druhy kapesníků – 132 dětských, 156 dámských a 204 pánských. Kapesníky jednotlivých druhů byly baleny do krabiček po počtu kusů stejném pro všechny tři druhy (a co největším). Určete tento počet, víte-li, že v každé krabičce bylo ví
  7. Dvě tyče
    saws Petr rozřezal dvě tyče na stejne, ale co největši možne dily. Jedna tyč měřila 42 cm, druha 63 cm. Kolik řezu musel udělat?
  8. Pokoje 2
    hotel_1 V ubytovně je 32 pokojů. Některé jsou dvoulůžkové, jiné čtyřlůžkové a zbývající mají 7 lůžek. Celkem je v celé ubytovně 139 lůžek. Kolik je kterých, jestliže počty jednotlivých druhů jsou dány dvojciferným číslem?
  9. Delitelé
    divisors Součet všech dělitelů jistého lichého čísla je 2112. Určete, jaký je součet všech dělitelů dvojnásobku tohoto neznámého čísla.
  10. Zbytek
    numbers2_35 A je libovolné přirozené číslo, které dává při dělení číslem 6 zbytek 1. B je libovolné přirozené číslo, které dává při dělení číslem 3 zbytek 2. Jaký zbytek dává při dělení třemi součin čísel A.B ?
  11. Sbírků pavouků a brouků
    brouci Chlapec si zakládá sbírků pavouků a brouků. Zatím jich má dohromady jen 8. Na otazku, kolik má brouků, odpověděl:,, Celá moje sbírka má 54 nohou. "Kolik mám pavouků a kolik brouků?
  12. Pastýř
    sheep_1 Pastýř má méně než 500 ovcí; když je dá do 2, 3, 4, 5, 6 řady tak se mu vždy 1 zvýší a když dá do 7 řad ovce, tak se mu nezvýší žádná ovce. Kolik ovcí má pastýř?
  13. 9.A
    exam Do 9.A chodí více než 20 žáků ale méně než 40 žáků. Třetina žáků napsala test z matematiky na jednotku, šestina na dvojku a devítinám na trojku. Nikdo nedostal čtyřku. Kolik žáků 9.A napsalo test na pětku?
  14. Pyramida Z8–I–6
    pyramida_mo Každá cihlička následující pyramidy obsahuje jedno číslo. Kdykoli to je možné, je číslo v každé cihličce nejmenším společným násobkem čísel ze dvou cihliček ležících přímo na ní. Které číslo může být v nejspodnější cihličce? Určete všechny možnosti.
  15. Renju
    gomoku Ve hře renju začínající hráč rozloží první tři kameny (černý, bílý a černý) na průsečíky na desce, rozdělené 15vodorovnými a 15svislími přímkami, tak, že vzniká 225 průsečíků, s dodržením následujícího pravidla: první kámen(černý) musí být ve středu desk
  16. Zverimex
    fish Ve Zverimexu vyprodávali rybky z jednoho akvária. Ondra chtěl polovinu všech rybek, ale aby nemuseli žádnou rybku řezat, dostal o polovinu rybky víc, než požadoval. Matěj si přál polovinu zbylých rybek, ale stejně jako Ondřej dostal o polovinu rybky víc n
  17. Myšky - Z9–I–5
    Mysky Myšky si postavily podzemní domeček sestávající z komůrek a tunýlků: • každý tunýlek vede z komůrky do komůrky (tzn. žádný není slepý), • z každé komůrky vedou právě tři tunýlky do tří různých komůrek, • z každé komůrky se lze tunýlky dostat do kterék