Uhol telesových uhlopriečok

Pomocou vektorového skalárneho súčinu (bodky) produktu vypočítajte uhol telesových uhlopriečok kocky.

Výsledok

A =  70.529 °

Riešenie:

D1=(1,1,1) D2=(1,1,1)  d1=D1 d1=12+12+12=31.7321  d2=D2 d2=12+12+(1)2=31.7321  D1 D2=d1 d2cosA  c=cosA=D1 D2d1d2  c=1 1+1 1+1 (1)d1 d2=1 1+1 1+1 (1)1.7321 1.7321130.3333  A0=arccos(c)=arccos(0.3333)1.231 rad  A=A0 =A0 180π  =1.23095941734 180π  =70.52878  =70.529=703144"D_{1}=(1,1,1) \ \\ D_{2}=(1,1,-1) \ \\ \ \\ d_{1}=|D_{1}| \ \\ d_{1}=\sqrt{ 1^2+1^2+1^2 }=\sqrt{ 3 } \doteq 1.7321 \ \\ \ \\ d_{2}=|D_{2}| \ \\ d_{2}=\sqrt{ 1^2+1^2+(-1)^2 }=\sqrt{ 3 } \doteq 1.7321 \ \\ \ \\ D_{1} \cdot \ D_{2}=d_{1} \ d_{2} \cos A \ \\ \ \\ c=\cos A=\dfrac{ D_{1} \cdot \ D_{2} }{ d_{1} d_{2} } \ \\ \ \\ c=\dfrac{ 1 \cdot \ 1+1 \cdot \ 1+1 \cdot \ (-1) }{ d_{1} \cdot \ d_{2} }=\dfrac{ 1 \cdot \ 1+1 \cdot \ 1+1 \cdot \ (-1) }{ 1.7321 \cdot \ 1.7321 } \doteq \dfrac{ 1 }{ 3 } \doteq 0.3333 \ \\ \ \\ A_{0}=\arccos(c)=\arccos(0.3333) \doteq 1.231 \ \text{rad} \ \\ \ \\ A=A_{0} \rightarrow \ ^\circ =A_{0} \cdot \ \dfrac{ 180 }{ \pi } \ \ ^\circ =1.23095941734 \cdot \ \dfrac{ 180 }{ \pi } \ \ ^\circ =70.52878 \ \ ^\circ =70.529 ^\circ =70^\circ 31'44"



Naše príklady z veľkej miery nám poslali alebo vytvorili samotní žiaci a študenti. Preto budeme veľmi radi, ak prípadne chyby, ktoré ste našli, pravopisné chyby alebo preštylizovanie príkladu nám prosím pošlite. Ďakujeme!





Napíšte nám komentár ku príkladu (úlohe) a jeho riešeniu (napríklad ak je stále niečo nejasné alebo máte iné riešenie, alebo príklad neviete vypočítať či riešenie je nesprávne...):

Zobrazujem 0 komentárov:
1st comment
Buďte prvý, kto napíše komentár!
avatar




Tipy na súvisiace online kalkulačky
Základom výpočtov v analytickej geometrií je dobrá kalkulačka rovnice priamky, ktorá zo súradníc dvoch bodov v rovine vypočíta smernicový, normálový aj parametrický tvar priamky, smernicu, smerový uhol, smerový vektor, dĺžku úsečky, priesečníky so súradnícovými osami atď.
Dva vektory určené veľkosťami a vzájomným uhlom sčíta naša kalkulačka sčítania vektorov.
Pytagorova veta je základ výpočtov aj kalkulačky pravouhlého trojuholníka.
Pozrite aj našu trigonometrickú trojuholníkovu kalkulačku.

 
Odporúčame k tejto úlohe z matematiky si pozrieť toto výukové video: video1   video2   video3

Ďaľšie podobné príklady a úlohy:

  1. Dekanon
    decanon Vypočítajte obvod a obsah pravidelného 10 uholníka ak polomer opísanej kružnice r = 20 cm.
  2. Základne 3
    rr_lichobeznik Základne rovnoramenného lichobežníka ABCD majú dĺžky 10 cm a 6 cm. Jeho ramená zvierajú s dlhšou základňou uhol α = 50˚. Vypočítajte obvod a obsah lichobežníka ABCD.
  3. Vrtuľník
    helicopter Záchranársky vrtuľník je nad miestom pristátia vo výške 180m. Miesto záchrannej akcie je odtiaľto vidieť pod hĺbkovým uhlom 52° 40 '. Ako ďaleko pristane vrtuľník od miesta záchranárske akcie?
  4. Na základe
    angles Na základe toho, že poznáte hodnoty sin a cos daného uhla a viete, že tg je ich podiel určte d) tg 120° e) tg 330°
  5. Stúpanie 7
    train_freight Priama železničná trať má stúpanie 16 promile. Akú veľkosť má uhol stúpania?
  6. Uhlopriečky
    cube_diagonals Kváder má rozmery a = 4cm, b = 3cm a c = 12cm. Vypočítajte dĺžku stenovej a telesovej uhlopriečky.
  7. S akou
    fractions_1 S akou pravdepodobnosťou je náhodne vybrané trojciferné číslo delitelne piatimi alebo siedmimi?
  8. Pravouhlý trojuholník
    rt_tr540 Pravouhlý trojuholník ABC má odvesnu a = 36 cm a obsah S = 540 cm2. Vypočítaj dĺžku odvesny b a ťažnicu tb.
  9. V kružnici
    tetiva2 V kružnici s priemerom d = 10 cm, je zostrojená tetiva o dĺžke 6 cm. Aký polomer by mala sústredná kružnica, ktorá by sa tejto tetivy dotýkala?
  10. Osobné autá
    crossing V akej vzdialenosti od seba budú 2 osobné autá po 2 hodinách jazdy, ak vyšli z tej istej garáže na dve na seba kolmé cesty, pričom jedno išlo rýchlosťou 82km/h a druhé išlo rýchlosťou 104km/h?
  11. Kvietok
    kvietok_MO Stvorcu bol opisany kruh a nad kazdou stranou stvorca ako nad priemerom bol vyzbaceny polkruh. Vznikli tak 4 "lupienky". Co je vacsie: obsah ustredneho stvorca, alebo obsah styroch lupienkov?
  12. Medzikružie
    annulus2 Vypočítajte obsah plochy medzi kružnicou opísanou a kružnicu vpísanou trojuholníku o stranách a = 25mm, b = 29mm, c = 36mm
  13. Strešna krytina
    kuzel2 Koľko m2 strešnej krytiny je potreba na pokrytie strechy tvare kužeľa s priemerom 10 m a výškou 4 m? Na presahy počítaj 4% navyše.
  14. Guľový odsek
    Spherical_cap Guľová odsek má polomer podstavy 8cm a výšku 5 cm. Vypočítajte polomer gule, ktorej časťou je táto guľový odsek.
  15. Železnicný násyp
    nasyp Železničný násyp 300 m dlhý má priečny rez tvaru rovnoramenného lichobežníka so základňami 14 m a 8 m. Ramená lichobežníka sú dlhé 5 m. Vypočítajte koľko m3 zeminy je v násype?
  16. Šarkan 6
    sarkan Deti majú šarkana na šnúre dlhej 80m, ktorý sa vznáša nad miestom vzdialenom 25m od miesta kde stoja deti. Ako vysoko sa vznáša drak nad terénom?
  17. Vypočítaj 50
    345 Vypočítaj zvyšné strany pravouhlého trojuholníka ak poznáš b= 4cm a vc = 2,4cm.