Chovprodukt

Z chovproduktu (Zverimexu) vypredávali rybky z jedného akvária. Ondrej chcel polovicu všetkých rybiek, ale aby nemuseli žiadnu rybku rezať, dostal o polovicu rybky viac, ako požadoval. Matej si prial polovicu zvyšných rybiek, ale rovnako ako Ondrej dostal o polovicu rybky viac než požadoval. Nakoniec Petrik chcel polovicu zvyšných rybiek, ale tiež dostal o polovicu rybky viac než požadoval. Potom bolo akvárium bez rybiek. Koľko rybiek bolo pôvodne v akváriu a koľko ich dostal Ondrej, koľko Matej a koľko Petrík?

Správny výsledok:

x =  7
O =  4
M =  2
P =  1

Riešenie:

x=231=7
O=x/2+0.5=7/2+0.5=4
M=(xO)/2+0.5=(74)/2+0.5=2
P=(xMO)/2+0.5=(724)/2+0.5=1



Budeme veľmi radi, ak nájdete chybu v príklade, pravopisné chyby alebo nepresnosť a ju nám prosím pošlete. Ďakujeme!






Zobrazujem 1 komentár:
#
Mo-radce
Možné riešenie. Budeme uvažovať odzadu:

Petrík dostal o polovicu rybky viac, než bola polovica všetkých rybiek, ktoré zostali po Matejovi. Pretože potom bolo akvárium prázdne, bola ona polovica rybky navyše práve polovicou toho, čo zostalo po Matejovi. Po Matejová nákupe teda zostala v akváriu jedna rybka. Matej dostal o polovicu rybky viac, než bola polovica všetkých rybiek, ktoré zostali po Ondrejovi. Pretože potom zostala v akváriu jedna rybka, bola táto rybka a polovica rybky navyše práve polovicou toho, čo zostalo po Ondrejovi. Po Ondrejove nákupu ostali v akváriu tri rybky. Ondrej dostal o polovicu rybky viac, než bola polovica všetkých rybiek, ktoré boli pôvodne v akváriu. Pretože potom ostali v akváriu tri rybky, boli tieto tri rybky a polovica rybky navyše práve polovicou pôvodného množstva rybiek. Pôvodne bolo v akváriu sedem rybek. Teda Ondrej dostal štyri rybky, Matej dve a Petřík jednu rybku.

Iné riešenie:

Ak pôvodný počet rybiek v akváriu označíme x, potom môžeme ďalšie počty postupne vyjadriť takto:
meno dostal zostalo
Ondrej (x + 1) / 2 (x - 1) / 2
Matej (x + 1) / 4 (x - 3) / 4
Petrík (x + 1) / 8 (x - 7) / 8

Odtiaľ je zrejmé, že po Petríkovom nákupe mohlo byť akvárium bez rybiek práve vtedy, keď x = 7. Dosadením ľahko určíme počty rybiek, ktoré si odniesli jednotliví chlapci.

avatar









Tipy na súvisiace online kalkulačky

 
Odporúčame k tejto úlohe z matematiky si pozrieť toto výukové video: video1   video2

Ďaľšie podobné príklady a úlohy:

  • V hoteli 2
    hotel-montfort-tatry-2_2 V hoteli Holiday majú na každom poschodí rovnaký počet izieb. Izby sú číslované prirodzenými číslami postupne od prvého poschodia, žiadne číslo nie je vynechané a každá izba má iné číslo. Do hotela pricestovali traja turisti. Prvý sa ubytoval v izbe číslo
  • MO Z9–I–3 - 2017
    robots Roboti Róbert a Hubert skladajú a rozoberajú mlynčeky na kávu. Pritom každý z nich mlynček zloží štyrikrát rýchlejšie, ako ho sám rozoberie. Keď ráno prišli do dielne, niekoľko mlynčekov už tam bolo zložených. O 7:00 začal Hubert skladať a Róbert rozobera
  • Stenové uhlopriečky
    cuboid_1 Ak sú stenové uhlopriečky kvádra x, y a z (diagonály), potom nájdite objem kvádra. Vyriešte pre x=1,3, y=1,2, z=1,1
  • Dve tetivy 3
    tetivy Vypočítajte dĺžku tetivy AB a k nej kolmej tetivy BC, ak tetiva AB je od stredu kružnice k vzdialená 4 cm a tetiva BC má vzdialenosť 8 cm.
  • MO Z9-I-6 2019
    triangles Kristína zvolila isté nepárne prirodzené číslo deliteľné tromi. Jakub s Dávidom potom skúmali trojuholníky, ktoré majú obvod v milimetroch rovný Kristínou zvolenému číslu a ktorých strany majú dĺžky v milimetroch vyjadrené navzájom rôznymi celými číslami.
  • Matik - KSM
    vahy2 V kuchárskej knihe od Mateja Matemakaka sa písalo: najväčší spoločný deliteľ gramáže múky a gramáže cukru je 15, najväčší spoločný deliteľ gramáže cukru a gramáže citrónovej kôry je 6, súčin gramáže cukru a gramáže citrónovej kôry je 1800, najmenší spoloč
  • V Kocúrkove - Z8-I-6 2019 MO
    mince_1 V Kocúrkove používajú mince iba s dvoma hodnotami, ktoré sú vyjadrené v kocúrkovských korunách kladnými celými číslami. Pomocou dostatočného množstva takých mincí je možné zaplatiť akúkoľvek celočíselnú sumu väčšiu ako 53 kocúrkovských korún, a to presne
  • GP tri členy
    progression_ao Druhý a tretí člen geometrickej postupnosti sú 24 a 12(c+1) v tomto poradí. Za predpokladu, že súčet prvých troch členov postupnosti je 76, určite hodnotu c.
  • Aritmetická postupnosť
    rt_triangle_2 Dĺžky strán pravouhlého trojuholníka s dlhšou odvesnou 12 cm tvoria aritmetickú postupnosť. Obsah trojuholníka je?
  • Z7–I–5 MO 2018
    ruze_5 V záhradníctve Rose si jedna predajňa objednala celkom 120 ruží vo farbe červenej a žltej, druhá predajňa celkom 105 ruží vo farbe červenej a bielej a tretia predajňa celkom 45 ruží vo farbe žltej a bielej. Záhradníctvo zákazku splnilo, a to tak, že ruží
  • MO Z8-I-1 2018
    age_6 Fero a Dávid sa denne stretávajú vo výťahu. Raz ráno zistili, že keď vynásobia svoje súčasné veky, dostanú 238. Keby to isté urobili za štyri roky, bol by tento súčin 378. Určte súčet súčasných vekov Fera a Dávida.
  • Vypočítajte 5
    rt_triangle_1 Vypočítajte dĺžky strán a uhly v pravouhlom trojuholníku. S=210, o=70.
  • Ciferný súčet
    number_line_3 Ciferný súčet dvojciferného čísla je deväť. Keď čísla obrátime a vynásobíme pôvodným dvojciferným číslom, dostaneme číslo 2430. Aké je pôvodne dvojciferné číslo?
  • Práca a koláče
    eura_10 Jedna firma zamestnala študenta-vysokoškoláka na celý mesiac jún na farme tak, že mu platila 16 € spolu s celodennou stravou na jeden deň. Ak v daný deň nepracoval, musel zaplatiť 6 € za stravu. Koľko dní študent pracoval, ak za mesiac jún zarobil 348 € ?
  • Steny kvádra
    cuboid_9 Vypočítajte objem kvádra, ak jeho rôzne steny majú obsahy 195cm², 135cm² a 117cm².
  • Predaje
    cukriky_9 Za 80 výrobkov dvojakej akosti sa utŕžilo celkom 175 Eur. Ak výrobok prvej kvality sa predával po n Eur za kus (n prirodzené číslo) a výrobok druhej akosti po dvoch Eur za kus, koľko kusov prvej kvality bolo predaných?
  • MO - bikvadrát
    eq2_6 Nájdite najväčšie prirodzené číslo d, ktoré má tú vlastnosť, že pre ľubovoľné prirodzené číslo n je hodnota výrazu V(n)=n4+11n2−12 deliteľná číslom d.