MO 2019 Z9–I–5

Majka zkoumala vícemístná čísla, ve kterých se pravidelně střídají liché a sudé číslice. Ta, která začínají lichou číslicí, nazvala komická a ta, která začínají sudou číslicí, nazvala veselá. (Např. Číslo 32387 je komické, číslo 4529 je veselé. )
Majka vytvořila jedno trojmístné komické a jedno trojmístné veselé číslo, přičemž šest použitých číslic bylo navzájem různých a nebyla mezi nimi 0. Součet těchto dvou čísel byl 1617. Součin těchto dvou čísel končil dvojčíslím 40.

Určete Majčina čísla a dopočítejte jejich součin.

Výsledok

a1 =  645
b1 =  972
s1 =  626940
a2 =  672
b2 =  945
s2 =  635040

Riešenie:

645+972=1617;(40=right(45 72,2)) 672+945=1617;(40=right(72 45,2)) 945+672=1617;(40=right(45 72,2)) 972+645=1617;(40=right(72 45,2))  a1=645 b1=972  x1=a1+b1=645+972=1617645 + 972 = 1617 ; (40 = right (45 \cdot \ 72,2)) \ \\ 672 + 945 = 1617 ;(40 = right (72 \cdot \ 45,2)) \ \\ 945 + 672 = 1617 ; (40 = right (45 \cdot \ 72,2)) \ \\ 972 + 645 = 1617 ; (40 = right (72 \cdot \ 45,2)) \ \\ \ \\ a_{ 1 } = 645 \ \\ b_{ 1 } = 972 \ \\ \ \\ x_{ 1 } = a_{ 1 }+b_{ 1 } = 645+972 = 1617
b1=972b_{ 1 } = 972
s1=a1 b1=645 972=626940s_{ 1 } = a_{ 1 } \cdot \ b_{ 1 } = 645 \cdot \ 972 = 626940
 a2=672 b2=945  x2=a2+b2=672+945=1617 y2=a2 b2=672 945=635040 \ \\ a_{ 2 } = 672 \ \\ b_{ 2 } = 945 \ \\ \ \\ x_{ 2 } = a_{ 2 }+b_{ 2 } = 672+945 = 1617 \ \\ y_{ 2 } = a_{ 2 } \cdot \ b_{ 2 } = 672 \cdot \ 945 = 635040
b2=945b_{ 2 } = 945
s2=a2 b2=672 945=635040s_{ 2 } = a_{ 2 } \cdot \ b_{ 2 } = 672 \cdot \ 945 = 635040







Napíšte nám komentár ku príkladu (úlohe) a jeho riešeniu (napríklad ak je stále niečo nejasné alebo máte iné riešenie, alebo príklad neviete vypočítať či riešenie je nesprávne...):

Zobrazujem 2 komentáre:
#
Jetammensiachyba
ale 645 a 972 nesplnaju podmienku o komickych a veselych cislach

avatar









Ďaľšie podobné príklady a úlohy:

  1. V hoteli 2
    hotel-montfort-tatry-2_2 V hoteli Holiday majú na každom poschodí rovnaký počet izieb. Izby sú číslované prirodzenými číslami postupne od prvého poschodia, žiadne číslo nie je vynechané a každá izba má iné číslo. Do hotela pricestovali traja turisti. Prvý sa ubytoval v izbe číslo.
  2. Predaje
    cukriky_9 Za 80 výrobkov dvojakej akosti sa utŕžilo celkom 175 Eur. Ak výrobok prvej kvality sa predával po n Eur za kus (n prirodzené číslo) a výrobok druhej akosti po dvoch Eur za kus, koľko kusov prvej kvality bolo predaných?
  3. Hrnčeky
    hrnceky Teta kúpila 6 rovnakých hrnčekov a jednu kanvicu na kávu. Spolu zaplatila 60€. Kanvica bola drahšia ako jeden hrnček, ale lacnejšia ako dva hrnčeky. Teta si pamätala, že všetky ceny boli v celých eurách. Koľko € stál jeden hrnček a koľko kanvica?
  4. MO Z8-I-1 2018
    age_6 Fero a Dávid sa denne stretávajú vo výťahu. Raz ráno zistili, že keď vynásobia svoje súčasné veky, dostanú 238. Keby to isté urobili za štyri roky, bol by tento súčin 378. Určte súčet súčasných vekov Fera a Dávida.
  5. Z7–I–5 MO 2018
    ruze_5 V záhradníctve Rose si jedna predajňa objednala celkom 120 ruží vo farbe červenej a žltej, druhá predajňa celkom 105 ruží vo farbe červenej a bielej a tretia predajňa celkom 45 ruží vo farbe žltej a bielej. Záhradníctvo zákazku splnilo, a to tak, že ruží r
  6. Tretiu s druhou
    sqrt_1 Máme 2 čísla. Keby sme vynásobili tretiu odmocninu prvého čísla s druhou odmocninou druhého čísla, dostali by sme číslo 18.Určte tieto 2 čísla. Ak má úloha v množine reálnych čísel nekonečne veľa riešení, vypočítajte len celočíselné riešenie.
  7. Ciferný súčet
    number_line_3 Ciferný súčet dvojciferného čísla je deväť. Keď čísla obrátime a vynásobíme pôvodným dvojciferným číslom, dostaneme číslo 2430. Aké je pôvodne dvojciferné číslo?
  8. MO Z9–I–3 - 2017
    robots Roboti Róbert a Hubert skladajú a rozoberajú mlynčeky na kávu. Pritom každý z nich mlynček zloží štyrikrát rýchlejšie, ako ho sám rozoberie. Keď ráno prišli do dielne, niekoľko mlynčekov už tam bolo zložených. O 7:00 začal Hubert skladať a Róbert rozoberať
  9. Stenové uhlopriečky
    cuboid_1 Ak sú stenové uhlopriečky kvádra x, y a z (diagonály), potom nájdite objem kvádra. Vyriešte pre x=1.8, y=1.1, z=1.45
  10. Dve tetivy 3
    tetivy Vypočítajte dĺžku tetivy AB a k nej kolmej tetivy BC, ak tetiva AB je od stredu kružnice k vzdialená 4 cm a tetiva BC má vzdialenosť 8 cm.
  11. Úsečky
    segments Úsečky dĺžok 67 cm a 3.1 dm máme rozdeliť na rovnaké diely tak, aby ich dĺžka v centimetroch bola vyjadrená celým číslom. Koľkými spôsobmi ich môžeme deliť?
  12. Steny kvádra
    cuboid_9 Vypočítajte objem kvádra, ak jeho rôzne steny majú obsahy 195cm², 135cm² a 117cm².
  13. MO - bikvadrát
    eq2_6 Nájdite najväčšie prirodzené číslo d, ktoré má tú vlastnosť, že pre ľubovoľné prirodzené číslo n je hodnota výrazu V(n)=n4+11n2−12 deliteľná číslom d.
  14. Stromčeky
    stromy_3 Sadár kúpil stromčeky za 960 KČ. Keby bol každý stromček o 12 KČ lacnejšie, bol by sadár za tie isté peniaze dostal o 4 stromčeky viac. Koľko stromčekov kúpil?
  15. Vypočítajte 5
    rt_triangle_1 Vypočítajte dĺžky strán a uhly v pravouhlom trojuholníku. S=210, o=70.
  16. Kvocient geometrickej
    geometricka-postupnost a1+a3=15 a1+a2+a3=21 Vypočítajte a1 a q(kvocient geometrickej postupnosti).
  17. Aritmetická postupnosť
    rt_triangle_2 Dĺžky strán pravouhlého trojuholníka s dlhšou odvesnou 12 cm tvoria aritmetickú postupnosť. Obsah trojuholníka je?