Lichoběžník MO

Je dán pravouhlý lichoběžník ABCD s pravým uhlem u bodu B, |AC| = 12, |CD| = 8, uhlopříčky jsou na sebe kolmé.

Vypočítejte obvod a obsah takéhoto lichobežníka.

Správný výsledek:

o =  33,31
S =  69,25

Řešení:

AC=12 CD=8  sinΘ=BCAC cosΘ=BCBD  cos2Θ+CDACcosΘ1=0 x2+CDACx1=0  x2+0.667x1=0  a=1;b=0.667;c=1 D=b24ac=0.667241(1)=4.4444444444 D>0  x1,2=b±D2a=0.67±4.442 x1,2=0.33333333±1.0540925533895 x1=0.72075922005613 x2=1.3874258867228   Soucinovy tvar rovnice:  (x0.72075922005613)(x+1.3874258867228)=0   Θ=435258"  BC=ACsinΘ=8.3182260804446 AB=ACcosΘ=8.6491106406735 AD=BC2+(ABCD)2=8.3435142325775  o=AB+BC+CD+AD=33.31|AC| = 12 \ \\ |CD| = 8 \ \\ \ \\ \sin \Theta = \dfrac{|BC|}{|AC|} \ \\ \cos \Theta = \dfrac{|BC|}{|BD|} \ \\ \ \\ \cos^2 \Theta + \dfrac{ |CD|}{|AC|}\cos \Theta - 1 =0 \ \\ x^2 + \dfrac{ |CD|}{|AC|}x - 1 =0 \ \\ \ \\ x^2 +0.667x -1 =0 \ \\ \ \\ a=1; b=0.667; c=-1 \ \\ D = b^2 - 4ac = 0.667^2 - 4\cdot 1 \cdot (-1) = 4.4444444444 \ \\ D>0 \ \\ \ \\ x_{1,2} = \dfrac{ -b \pm \sqrt{ D } }{ 2a } = \dfrac{ -0.67 \pm \sqrt{ 4.44 } }{ 2 } \ \\ x_{1,2} = -0.33333333 \pm 1.0540925533895 \ \\ x_{1} = 0.72075922005613 \ \\ x_{2} = -1.3874258867228 \ \\ \ \\ \text{ Soucinovy tvar rovnice: } \ \\ (x -0.72075922005613) (x +1.3874258867228) = 0 \ \\ \ \\ \ \\ \Theta = 43^\circ 52'58" \ \\ \ \\ |BC| = |AC| \sin \Theta = 8.3182260804446 \ \\ |AB| = |AC| \cos \Theta = 8.6491106406735 \ \\ |AD| = \sqrt{ |BC|^2 + (|AB|-|CD|)^2} = 8.3435142325775 \ \\ \ \\ o = |AB|+|BC|+|CD| + |AD| = 33.31
S=(AB+CD)BC2=69.25S = \dfrac{(|AB|+|CD|)\cdot |BC|}{2}= 69.25



Budeme velmi rádi, pokud náhodou najdete chybu v příkladu, pravopisné chyby nebo nepřesnost a ji nám prosím pošlete . Děkujeme!






Zobrazuji 2 komentáře:
#
Žák
mám za to, že cos(x)2+sin(x)2=1. Vy ale počítáte s tím, že 2cos(x)2=1. A to je asi blb2, ne?

#
Žák
Za předpokladu, že jsou zadány délky uhlopříček |AC| = 12 cm a |BD| = 8 cm je plocha příslušného pravoúhlého lichoběžníka 54 cm2 a obvod cca 30,5 cm.

avatar









Tipy na související online kalkulačky
Hledáte pomoc s výpočtem kořenů kvadratické rovnice?
Potřebujete pomoci sčítat, zkrátít či vynásobit zlomky? Zkuste naši zlomkovou kalkulačku.
Máte lineární rovnici nebo soustavu rovnic a hledáte její řešení? Nebo máte kvadratickou rovnici?
Pythagorova věta je základ výpočtů kalkulačky pravouhlého trojuholníka.
Vyzkoušejte také naši trigonometrickou trojúhelníkovou kalkulačku.

 
Doporučujeme k tomuto príkladu si prohlédnout toto výukové video: video1   video2

Další podobné příklady a úkoly:

  • Čtyřúhelník
    quadrilateral Ukažte, že čtyřúhelník s vrcholy P1 (0,1), P2 (4,2) P3 (3,6) P4 (-5,4) má dva pravé trojúhelníky.
  • Lichoběžník
    rt_iso_triangle Lichoběžník je vytvořen odříznutím horní části pravoúhlého rovnoramenného trojúhelníku. Základna lichoběžníku je 10 cm a horní část je 5 cm. Najděte obsah lichoběžníku.
  • Z7–I–2 MO 2018
    12uholnik Ve dvanáctiúhelníku ABCDEF GHIJKL jsou každé dvě sousední strany kolmé a všechny strany s výjimkou stran AL a GF jsou navzájem shodné. Strany AL a GF jsou oproti ostatním stranám dvojnásobně dlouhé. Úsečky BG a EL se protínají v bodě M. Čtyřúhelník ABMJ m
  • Vypočítejte 22
    described_circle2 Vypočítejte obsah kruhu, který má stejný obvod jako je obvod obdélníku vepsané kružnici o poloměru r 9 cm tak, že jeho strany jsou v poměru 2 ku 7.
  • Čtverci
    medzikrucie2 Čtverci o straně a=1 je vepsaná a opsaná kružnice. Určete obsah mezikruží.
  • Čtvrtkruh
    quarter_circle_1 Jaký poloměr má kruh vepsaný do čtvrtkruhu o poloměru 100 cm?
  • Mezikruží
    mezikruzi Čtverci o obsahu 16 centimetrů čtverečních je vepsaná kružnice k1 a opsána kružnice k2. Vypočtěte obsah mezikruží, které kružnice k1, k2 ohraničují.
  • V pravidelném 2
    jehlan3 V pravidelném čtyřbokem jehlanu je výška 6,5 cm a úhel mezi podstavou a boční stěnou je 42°. Vypočítej povrch a objem tělesa. Výpočty zaokrouhlit na 1 desetinné místo.
  • Kosý hranol
    kosyHranol Jaký objem má čtyřboký kosý hranol s podstavnými hranami o délce a=1m, b=1,1m, c=1,2m, d=0,7m, jestliže boční hrana o délce h=3,9m má odchylku od podstavy 20°35´ a hrany a, b svírají úhel 50,5°.
  • Logo firmy
    circle_square_insribed Logo firmy tvoří modrý kruh s poloměrem 4 cm, ve kterém je vepsán bílý čtverec. Přibližně jaký obsah má modrá část loga?
  • Obsah 17
    rectangle Vypočítejte obsah obdélníku s úhlopříčkou u=12,5cm a se šířkou b=3,5cm. Výpočet podle Pythagorovy věty.
  • Záhon 10
    flowers2 Záhon tvaru dvou rovnostranných trojúhelníků se společnou stranou, s délkou strany 2,5 m má být osázen sazenicemi okrasného keře. Zahradník doporučil mezi jednotlivými sazenicemi ponechat mezery 40 cm a na samotnou sazenici je potřeba 10 cm z obvodu. Urči
  • Odpad
    doska_kruh Kolik procent tvoří odpad z kruhové desky o poloměru 1 m, ze které vyřežeme čtverec s co největším obsahem?
  • Úseč
    odsek Vypočítejte plochu S úseče a délku kruhového oblouku l. Výška úseče je 2 cm a úhel α = 60°. Pomůcka: S = 1/2 r2. (Β-sinβ)
  • Kruhový bazén
    arc_open Podstava bazénu má tvar kruhu o poloměru r = 10m kromě kruhového odstavce, který určuje tětiva délky 10m. Jeho hloubka je h = 2m. Kolik hektolitrů vody se vejde do bazénu?
  • Plášť 8
    kuzel2 Plášť kužele je vytvořen svinutím kruhové úseče o poloměru 1. Pro jaký středový úhel dané kruhové výseče bude objem vzniklého kužele maximální?
  • Lupínky - kvítek
    kvietok_MO Čtvercu byl popsán kruh a nad kazdou stranou čtverce jak nad průměrem byl vyzbaceny půlkruh. Vznikly tak 4 "lupínky". Co je větší: obsah ústředního čtverce nebo obsah čtyř lupínků?